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This report was prepared as an account of Government-sponsored work. Neither

the United States, nor the National Aeronautics and Space Administration (NASA),

nor any person acting on behalf of NASA:

A.) Makes any warranty or representation, expressed or implied, with

respect to the accuracy, completeness, or usefulness of the infor-

mation contained in this report, or that the use of any information,

apparatus, method, or process disclosed in this report may not in-

fringe privately-owned rights; or

B.) Assumes any liabilities with respect to the use of, or for damages

resulting f_om the use of any information, apparatus, method or

process disclosed in this report.

As used above, "person acting on behalf of NASA" includes any employee or con-

tractor, to the extent that such employee or contractor of NASA or employee of

such contractor prepares, disseminates, or provides access to any information

pursuant to his employment or contract with NASA, or his employment with such
contractor.
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FOREWORD

The work described herein, which was conducted by the Martin Marietta Cor-

poration, Denver Division, was performed under NASA Contract NAS3-12028. The

work was done under the management of the NASA Project Manager, Mr. James R.

Faddoul, Liquid l{ocket Technology Branch, NASA-Lewis Research Center.
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ABST_IACT

Fifteen metallic alloys were tested to determine whether

straining (uniaxial tension) at cryogenic temperatures de-

veloped higher strengths than did strainin_ at room temper-

ature. Two alloys were significantly strengthened by cryo-

straining: PH 14-8 Mo, a precipitation hardenin_ stainless

steel; and MP 35 N, a nickel-cobalt alloy. Seven alloys:

6061, 5456, Inconel 718, Nickel 440, beryllium copper, A-286,

and 21-6-9 could be strained greater amounts, therebv devel-

oping higher strengths, at cryogenic temperatures than at

room temperature. For the other alloys, 22]9, L-605, LAI41A,

TRIP steel, Ti 6A_-4V ELI, and Ti 5A_:-2.5Sn ELI, straining

at cryogenic temperatures was not beneficial.
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PROPERTIES OF CRYOGENICALLY

WORKED MATERIALS

By Richard D. Masteller, Howard J. Brown,

Richard G. Herzog, and Samuel H. Osgood

Martin Marietta Corporation

SUMMARY

This is an Interim Report of the first year's work on the two-year program

being conducted under Contract NAS3-12028. The objective of the program is to

find a metallic alloy that can be significantly strengthened by cryoworking

and yet retain sufficient toughness, corrosion resistance, and other essential

characteristics so that its usefulness as a structural material is not lost.

During the first year of the program 15 selected alloys were subjected to

a series of tests designed to identify those alloys that were most significantly

strengthened by cryoworking. The second year's effort will consist of a more

detailed investigation of a limited number of alloys that, from the previous

testing, are known to have a high potential for developing higher strengths

through cryoworking. Specifically these alloys will be tested to determine

how uniaxial straining at a cryogenic temperature affects their room tempera-

ture tensile properties; fracture toughness characteristics; and stress corrosion

resistance. Also, tests will be conducted to determine how thermal treatment

(aging) response is affected by prior cryostraining.

The first year's effort reported herein, consisted of five basic tasks,

namely:

Task I - Material Selection and Procurement;

Task II - Preparation of Baseline and Cryosoaked Specimens;

Task III- Preparation of Cryoworked Specimens;

Task IV - Room Temperature Testing;

Task V - Evaluation of Results.

During Task I, applicable data, identified through various literature

searches, were reviewed, and cognizant personnel in the metal working industry

were contacted to obtain the information needed to select the 15 alloys to be

tested. Ultimately, the following alloys were tested:

2219 aluminum alloy;

5456 aluminum alloy;

6061 aluminum alloy;

Beryllium copper;



L-605 cobalt alloy;

_ 35 N cobalt-nickel alloy;
LAI41Amagnesiumalloy;

Inconel 718 nickel alloy;

Nickel 440 nickel alloy;

A-286 austenitic precipitation hardening corrosion resistant steel;

Pll 14-8 _io semiaustenitic precipitation hardening corrosion resistant
steel;
TRIU steel;

21-6-9 austenitic corrosion resistant steel;

5A_!-2.5 Sn ELI titanium alloy;

6AI-4V ELI titanium alloy.

During Tasks II, IIl, and IV the alloys were subjected to a series of
treatments and tests that were designed to determine how the room temperature
tensile properties of each alloy were affected whenthe alloy was strained at
cryogenic temperatures.

Of the 15 alloys tested, only two, PH4-8 Moand MP35 N, showeda signifi-
cant response to cryostraining. Both of these alloys undergo strain-induced
phase transformations, and earth alloy is strengthened by the transformation.
For PH14-8 >_oit is an austenite-to-martensite transformation, while for MP
35 N, platelets of a hexagonal-close-packed phase form within the face-centered
cubic (fcc) structured matrix. The transformation in each alloy is apparently
enhancedwhen the alloy is strained at a cryogenic temperature.

Sevenother alloys, 6061, 5456, Inconel 718, Nickel 440, beryllium copper,
A-286, and 21-6-9, were found to have a higher uniform strain capability at
one or more of the cryogenic temperatures than at room temperature. Conse-
quently, these alloys can be strained greater amounts, and thus strengthened
more, when they are strained at cryogenic temperatures than when they are
strained at room temperature. The magnitude of the strength increase that can
be achieved by straining these alloys at cryogenic temperatures is so small
(proportionally), however, that cryostraining does not appear to merit considera-
tion as a practical method for strengthening them.

Straining at room remperature is equally as effective a method for strength-
ening 2219, L-605, LAI41A, TRIP steel, 6AI-4V ELI, and 5A_-2.5 Sn ELI, as is
straining them at cryogenic temperatures.



I. INTRODUCTION

Background

Deforming a metal plastically at a temperature lower than its recrystalliza-
tion temperature, is the accepted definition for cold working of metals. Gen-
erally, a metal is strengthened and hardened by cold work, while its toughness
and ductility are reduced. The magnitude of the strengthening, hardening, and
other effects wrought by cold working vary greatly from alloy to alloy and are
dependent upon alloy base, chemical composition and other factors. While the
effects of cold working have long been recognized and used effectively as a means
of strengthening metals, the mechanismof strain hardening has not yet been com-
pletely explained. A numberof theories have been presented, none of which sat-
isfactorily explain all of the observed facts. The dislocation theory of strain
hardening is currently the most generally accepted strain hardening theory.

Although the exact mechanismby which metals strain harden is unknown, met-
als are cold worked by numerousprocesses and methods. Generally, these proc-
esses involve the straining, or working, of the metal at a temperature somewhere
between the metal's recrystallization temperature and room temperature. However,
the working of metals at temperatures appreciably below room temperature has not
been fully investigated or exploited. Somephenomenological studies have been
conducted, for example; Wellinger and Seufert (ref. I) have reached a conclu-
sion that metals and alloys with a face-centered cubic (fcc) structure whenpar-
tially worked at low temperatures retain someof their increased resistance to
deformation when they are further strained at room temperature. Body-centered
cubic (bcc) structured metals and alloys do not exhibit this characteristic.
The authors showthat this behavior is in accord with the dislocation theory of
strai_ hardening. Ripling (ref. 2) discusses in detail the ductility deficiency
observed whenmetals and alloys with other than a fcc structure are strained at
low temperatures. Liu and Ripling (ref. 3) report that prestraining 2024-T4
aluminum alloy (fcc structure) at low temperatures produced higher room tempera-
ture flow curves than did equal prestrains at room temperature. An interesting
feature to note in reviewing the behavior of metals at cryogenic temperatures,
particularly those with a fcc structure, is that the temperature dependenceof
the ultimate tensile strength is greater than that of the yield strength. There-
fore, these materials can be plastically deformed greater amounts, without neck-
ing, at temperatures below room temperature than they can at room temperature.
The increased capability for plastic deformation at low temperatures, together
with the tendency for a metastable 17-7 (301) or on 18-8 ELC(304L) stainless
steel to undergo a strain-induced austenite-to-martensite transformation when
strained at low temperatures, are the bases for the Ardeform Process,* developed
by Arde, Inc., Paramus,N. J.

Somealloys can be more efficiently and effectively strengthened by thermal
treatment than by cold work. Other alloys respond to combined treatments, and
others, like pure metals, cannot be strengthened by thermal treatment.

* Patent No. 3,197,851; 3 August 1965.



The two types of thermal treatment used to strcn_t!_en metal alloys that are
pertinent to the program are: (i) those used to vfi,_,,t a polymorphic trans-

iormation; and (2) those classified as precipitation h_irdvning treatments. The

classic example of the first type of treatment is tile austenitize-quench-temper

treatment by which many steels are strength_rR_d. The precipitation treatment

is exemplified by the process used to strengthen the ]1<,:_L-treatable aluminum

_l]]oys. This process involves heating the material L._ _ Lexnperature somewhat

lower than the melting temperature of tile alloy t,_ F_rm a solid solution. From

this temperature the material is rapidly cooled (quun< u_d) to producu a super-

saturated solid solution at room temperature. The natcrial is [llen reheated to

a [empt_rature lower than the solution treatment tL,mp_,_,_ Iure to promotc_ [li_, pre-

cipitation of submicroscopic particles of a svcond plies< within the matrix. The

first operation of this sequence is tile s<,]uti<_n trv_.L_,'Ht, [he ]attvr, [he pre-

cipitation or artificial aging treatment.

The aging kinetics of some precipitation hardeni.ng alloys can be altered if

tile material is plastically deformed after it has been solution treated and

quenched and before it is artificially aged. Two examples of this effect are

shown in the following tabulation.

Alloy

2219-T6

2219-781

2219-T87

Inconel 718

Inconel 718

Inconel 718

Cold work, %

(after solution

treatment and

before aging)

0

1-3

7-10

0

3O

5O

Ultimate

tensile

strength

ksi N/cm _

61 42 x 10 <

66 46 x ]0:

69 47 x ]0

195 ]34 x ](_):

225 i]5 x l0'

245 170 x 10
l

Tensile yie]d

strength, 0.2%

offset

ksi N/cm i

45 31 x i0 _:

48 : 33 x i0 _

38 i 40 x 10

170 117 x i0:

210 145 x i0 !:

225 155 x i0 I::

This report is an account of the results obtained during the first year of

a two-year test program being conducted under ContracL NAS3-12028. The objec-

tive of the program is to find a metallic alloy that can be significantly

strengthened by cryostraining, and yet will retain sufficient toughness, corro-

sion resistance, and other essential characteristics, so that its usefulness as

a structural material is not lost.

Approach

The program is divided into two parts, each of une-vear duration. During

the first year, 15 alloys were selected for inw_stigation and subjected to screen-

ing tests to determine the alloys for which cryostr_:_.i,ainz is a potc, ntia]ly prac-

tical strengthening process. The same basic plan was followed in testing each

alloy, specifically:

I) Specimens were strained at four temperuturv>: room temperature;

-llO°F (194°K); -320°F (78°K); and-423°F (20°K);



2) Three groups of specimenswere strained at each temperature, one
group to each of three predetermined target strains. The target
strains were selected to allow all specimens to be strained plas-
tically but uniformly, with no necking or fracture;

3) Another group of specimenswas soaked but not strained at each
temperature;

4) For heat treatable alloys, one-half of each group of specimens that
had been soaked or strained at a temperature were given an appropriate
aging treatment;

5) Roomtemperature tensile tests were conducted on the specimens condi-
tioned as indicated in 2), 3), and 4) above. The properties obtained
were: ultimate tensile strength, tensile yield strength - 0.2% off-
set, and percent elongation.

Data from the first year's tests will serve as the basis for selecting a mini-
mumof three alloys to be tested during the first task of the second year's pro-
gram. From the results of these tests one alloy will be selected and subse-
quently tested to determine how cryostraining affects its response to thermal
treatment (aging), fracture toughness, and stress corrosion resistance.

The Task outline of the two-year program is:

Task I - Materials Selection;

Task II - Preparation of Baseline and Cryosoaked Specimens;

Task III.- Preparation of Cryoworked Specimens;

Task IV - RoomTemperature Testing;
Task V - Evaluation of Results;

Task VI - Selection of Promising Alloy;

Task VII - Thermal ResponseTests;
Task VIII - Fracture Toughness, Stress Corrosion and High Energy Rate

Tests;

Task IX - Analysis

Tasks I thru V collectively constitute the general screening program that
was conducted during the first year. Tasks VI through IX are the second year's
program. Following are summariesof each task.

Task 1 - Material Selection

The objective of the program places strong emphasis on investigating proven
structural materials, particularly those with a high potential for use in aero-
space applications. The most likely application for a cryostrain-hardened mate-
rial is in pressure vessels, because the material can be formed and welded into
the shape of a vessel and then, through the application of internal pressure,



cryostrained as required. Consequently, when the materials were selected for
the first year's program, priority was given structural materials, particularly
those suitable for high strength tanks and aerospace structures. Other factors
considered were:

i) Contract requirements - to select and test a minimumof 15 alloys,
with no more than five alloys from any one base metal system;

2) A material's properties and characteristics, specifically;
a) Crystal structure,

b) Strain hardening characteristics,

c) Thermal hardening characteristics,

d) Phase transformations,

e) Properties at cryogenic temperatures, particularly ductility,
f) Weldability,

g) Formability,
h) Availability in sheet or strip form,

After a review of available data, the following alloys were selected, and
subsequently, tested.

Aluminumalloys - 2119, 5456, and
6061;

Cobalt alloy - L-605;
Cobalt-nickel alloy - _ 35N;

Copperalloy - Beryllium copper;
Magnesiumalloy - LA 141A;

Nickel alloys - Inconel 718, Nickel
440;
Steels - A-286, PH 14-8 Mo, TRIP,
21-6-9 ;

Titanium alloys - 6AI-4V EL1, 5A_-
2.5Sn ELI.

Task II - Preparation of Baseline and CryosoakedSpecimens

A logical application for a cryostraining process is the fabrication of pres-
sure vessels. Onepossible sequenceof operations to produce a cryostrained
vessel would be to form the componentparts, weld them into the shape of a ves-
sel, and cryostrain by applying an internal pressure to the vessel while it is
immersedin a cryogen. Sufficient pressure could be applied to produce the de-
sired amountof plastic strain. Processed in this mannera material would strain
in tension. Consequently, for the first year's screening program the method of
straining selected and used was uniaxial tension. The materials tested in the
programwere procured in the form of sheet or strip, therefore, the specimens
used throughout Tasks II, III, and IV were standard flat tensile specimens, meet-
ing the requirements of Federal Test Method Standard No. 151. The tests con-
ducted under Tasks II, III, and IV were for the purpose of determining how the
longitudinal tensile properties of each of the 15 alloys were affected when the
alloy was strained at cryogenic temperatures.



Tests were conducted during Task II to determine how long a specimenhad to
be immersedin a cryogen before thermal equilibrium between the specimenand the
bath was achieved. It was found that for the thin specimensbeing tested, ther-
mal equilibrium between the specimenand bath was always achieved in less than
two minutes. Anticipating that in someinstances adjustments to the load linkage
and other equipment could delay the start of the straining operation beyond the
two minutes necessary to achieve thermal equilibrium, a standard prestrain soak
time of five minutes was established for all specimensstrained at -II0°F (194°K),
and -320°F (78°K). Becausea closed system that required slow filling of the cry-
ostat for each straining operation was used to strain at -423°F (20°K), a standard
30-minute prestrain soak time was established for that operation. To determine
whether or not the 5- or 30-minute exposure to temperature before straining af-
fected poststrain properties, during Task II, specimens of each alloy were exposed
at the various cryogenic temperatures for the appropriated time period and sub-
sequently tested in Task IV. A particular specimenwas exposed to only one tem-
perature. Generally, ten specimensof a heat treatable alloy were exposedat each
temperature, while for nonheat treatable alloys, five specimenswere exposed at
each temperature. These specimens, referred to as cryosoaked specimens, are de-
signated as 0%strained specimens in the figures in Chapter IV and in the tables
of the Appendix.

During Task II the baseline specimenswere also prepared, in the samequantity
per alloy as the cryosoaked specimens. The baseline specimensare those desig-
nated in the tables and figures as 0%strained at room temperature.

Task III- Preparation of Cryostrained Specimens

Specimensof each alloy were prepared and strained according to the basic
straining schedule, shownin the following tabulation. These specimenswere
tested in Task IV. Specific deviations from the basic schedule are noted and
explained in Chapter IV, Test Results.

Quantity of specimensstrained

Strain level Aa Strain level Ba Strain level Ca
Straining Heat Nonheat Heat Nonheat Heat Nonheat

temperature treatable treatable treatable treatable treatable treatable
alloy alloy alloy alloy alloy alloy

RoomTemp i0 5 i0 5 i0 5
-II0°F (194°K) i0 5 i0 5 i0 5
-320°F (78°K) i0 5 i0 5 i0 5
-423°F (20°K) i0 5 I0 5 i0 5

aThe term "strain level" was applied to the target strains that were developed
for each alloy at each temperature. They were alloy and temperature dependent,
and were computedas follows: Level A was the samevalue at all temperatures,
it was set equal to 40%of the alloy's uniform strain capability at the temper-
ature at which the alloy had the least uniform strain capability. Levels B and
C, at a particular temperature, were set equal to 60%and 80%, respectively, of
the alloy's uniform strain capability at that temperature.



The specimenswere strained, uniaxial tension, using standard tensile ma-
chines, accessories, cryostats, and appropriate cryogens. A strain rate of
0.050 in./in./minute (0.050 cm/cm/min) was used to strain all specimensexcept
the Ti 6A£-4V ELI specimens. For these, a strain rate of 0.005 in./in./minute
(0.005 cm/cm/min) was used.

Task IV - RoomTemperature Tensile Tests

During Task IV the cryosoaked and cryostrained specimens prepared in Tasks
II and III were subjected to standard room temperature tensile tests, conducted
in accordance with the requirements of Federal Test }lethod Standard No. 151.
For heat treatable alloys, one-half of each set of soaked or strained specimens
were given an appropriate aging treatment before they were tested. The other
half of each set were tested in the as-strained or as-soaked conditions, as were
the specimens of the nonheat treatable alloys.

The aging treatments selected for the heat treatable alloys were industry
standard treatments. Strain hardening accelerates the response of manyof the
alloys to aging treatments; consequently, whennecessary, the aging treatment
given unstrained specimenswas different than that given strained specimens.
Also, in somecases, two aging treatments were used for strained specimens, one
appropriate for highly strained specimens, the other most suitable for lesser
strained specimens. Oneof the treatments was selected as the primary treatment
and the majority of the strained specimenswere given that treatment. However,
for comparison, at least one specimen of each set of strained specimenswas
given the alternative treatment.

Task V - Evaluation

The final task of the first year's program was the ana]ysis of the data de-
veloped in conducting Tasks I thru IV. lhi_ report is an account of the first
year's testing.

Task VI - Selection of Promising Alloy

The first task of the second year's program will consist of a numberof sub-
tasks, namely:

i)

2)

3)

Selection of alloys to be tested. The results of Task IV testing

will be the primary basis for selecting no Less than three alloys

to be evaluated in Task VI;

Tests will be conducted to determine the effect of straining at a

cryogenic temperature on the room temperature longitudinal and trans-

verse tensile properties of each alloy;

Tests will be conducted to determine how welding before straining

affects postcryostrained tensile properties;



4)

5)

Tests will be conducted to determine how roll straining at a cryo-

genic temperature affects tensile properties;

Tests will be conducted to assess the effects of strain rate on post-

cryostrained tensile properties.

Task VII - Thermal Response Tests

The results of the Task VI tests will be analyzed and the alloy that shows

the best response to the tests will be selected for additional testing in Tasks

VII and VIII.

Tests will be conducted to develop data needed to construct constant temper-

ature aging response curves for the alloy in various cryostrained conditions.

Task VIII - Fracture Toughness, Stress Corrosion, and High Energy Rate

Forming Tests

The effects of cryostraining on the fracture toughness and stress corrosion

resistance of the alloy will be studied. Also, the effects of cryostraining by

means of a high-energy rate forming method on the room temperature tensile prop-

erties of the alloy will be studied.

The following chapters of this report are an account of the first year of

the program, Task I thru Task V.



II. MATERIALSSELECTION

The selection of materials to be tested during Tasks II, III, and IV was
based on the overall objective of the program that places emphasison struc-
tural alloys, particularly those suitable for high-strength pressure vessels.
However, because 15 alloys were to be tested, it was possible to include sev-
eral alloys on the basis of academic interest rather than because of their
structural potential. The criteria for selecting the materials were:

I) Crystal structure (fcc, bcc, etc);
2) Strain hardening characteristics;

3) Thermal hardening characteristics;

4) Phase transformations;

5) Properties at cryogenic temperatures, particularly, ductility;

6) Weldability;
7) Formability;

8) Availability in sheet or strip form;
9) Potential for structural applications.

A literature search was initiated for sources of information on candidate
alloys, specifically their behavior at cryogenic temperatures and how they are
affected by straining at cryogenic temperatures. Actually, three separate ma-
chine searches were conducted, one through the National Aeronautics and Space
Administration, one through the Department of Defense, and the third through
the National Bureau of Standards. As a result of these searches, over ii00
reference documentswere identified. The most significant results obtained
from these references were:

The cryogenic properties of various metallic materials, particu-
larly ultimate tensile, tensile yield, and elongation at temper-
atures to -423°F (20°K);

The relationship of various thermal treatments to cryogenic pro-
perties;

The crystalline structure of metallic materials and their relation-
ship to cryogenic properties.

Unfortunately, most of the references did not provide information that
was useful in selecting materials for this program. The only significant in-
formation regarding the cryogenic straining of metals was found in the data
published by Arde, Inc.

Contacts were madewith various personnel in industry who are producers,
users, or investigators of metallic materials. These contacts proved to be ex-
tremely helpful, particularly in choosing betweensimilar alloys for such
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reasons as presumedresponse to cryostraining based on composition, microstruc-
ture, and mechanical properties.

The following materials were selected for testing in Tasks II, III, and IV:

2219 aluminum alloy;

5456 aluminum alloy;

6061 aluminum alloy;

Beryllium copper;

L-605 cobalt alloy;
MP35 N cobalt-nickel alloy;

LAI41Amagnesiumalloy;

Inconel 718 nickel alloy;
Nickel 440 nickel alloy;

A-286 austenitic precipitation hardening stainless steel;

PH 14-8 Mo semiaustenitic precipitation hardening stainless steel;
TRIP steel;

200 grade 18%nickel maraging steel;

21-6-9 austenitic stainless steel;

5A_-2.5Sn EL1 titanium alloy;

6A_-4VEL1 titanium alloy.

A brief discussion of each material follows.

AluminumAlloy 2219

The density of aluminum alloy 2219 is 0.103 ib/cu in. (2.85 gm/cc).
typical mechanical properties are shownin the following tabulation.

Its

Condition

2219-0
2219-T31
2219-T81
2219-T87
2219-T62

Ultimate
tensile
strength

psi N/cm2

25 000 17 000
52 000 36 000
66 000 46 000
69 000 48 000
60 000 41 000

Tensile yield
strength, 0.2%

offset

psi N/cm2

ii 000 7 500
36 000 25 000
51 000 35 000
57 000 39 000
42 000 29 000

Elongation
%in 2 in.
(5.08 cm)

18
17
i0
i0
i0

The crystal structure of 2219 alloys is fcc.
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The 2219 alloy is a moderately high-strength alu1:inum alloy that can be
strengthened by thermal treatment and can be additional|:,' strengthened if it is
cold worked after the solution treatment and before the aging treatment. It
has excellent welding characteristics and is available in most of the common
wrought forms. It was chosen for the program over oti_,_y2xxx series aluminum
alloys such as, 2014 and 2024, mainly because of its combination of strain
i_ardening characteristics and weldabi]ity.

AluminumAlloy 5456

['he density of aluminum alloy 5456 is 0.096 lb/cu ]_i. (2.66 gm/cc).

typical mechanical properties are shown in ti_e following tabulation.

Its

Condition

5456-0

5456-H311

Ultimate

tensile

strength

psi N/cm':

45 000 31 000

51 000 35 000

'±ensile yield

strengti_, 0.2'%

offset

psi :_/cm "L

23 000 16 000

37 000 26 000

Elongation

% in 2 in.

(5.08 cm)

24

16

The crystal structure of 5456 alloy is fcc.

The 5456 alloy is one of the higher strengti_ alloys of the 5xxx series of

work hardening alloys; it is not strengthened by thermal treatment. Xagnesium

is the major alloying element of 5456. Ti_is alloy welds readily, has excellent

corrosion resistance, and is available in most wrought forms. It was included

in ti_e program because of its strain hardening capability.

Aluminum Alloy 606]

The density of aluminum alloy 606] is 0.09_ Ib/uu in. (2.71 gin/co).

typical mechanical properties are shown in the following tabulation.

Its

Condition

6061-0

6061-T4

6061-T6

Ultimate

tensile

strength

psi N/cm _

i_ 000 12 000

35 000 24 000

45 000 31 000

Tensile yield

strength, 0.2%

offset

p s i :</ cm _:

8 000 b 500

21 000 14 000

40 000 28 J00

Elongation

% in 2 in.

(5.08 cm)

25

22

12

The crystal structure of 6061 alloys is fc<.

The 6061 alloy is a moderate strength, ileat treatable, aluminum alloy,

weldable and with excellent corrosion and stress corrosion resistance. The ma-

]<_r alloying elements of 6061 are magnesium al_d si1[<<m, fhis alloy is avail-

aDle in all wrought forms, it is used extensivuly in _,Lructural applications

and is a popular material for cryogenic npplications.
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Beryllium Copper

The density of beryllium copper is 0.297 ib/cu in. (8.23 gm/cc).
cal mechanical properties are shownin the following tabulation.

Its typi-

Condition

Annealed
72H (half hard)
AT (hardened)
_2LiT (hardened)

Ultimate
tensile
strength

psi N/cm_

60 000 41 000
85 000 59 000

175 000 121 000
195 000 134 000

Tensile yield
strength, 0.2%

offset

psi N/cmz

130 000 90 000
140 000 97 000

Elongation
%in 2 in.
(5.08 cm)

35
5
5
3

T_e crystal structure of beryllium copper is fcc.

Beryllium copper (CopperDevelopmentAssociation No. 172) is a copper base
wrought alloy that is strengthened by both cold work and thermal treatment.
It has excellent cryogenic properties, forms readily in the annealed condition,
and is weldable. It is one of the highest strength copper alloys.

MP35 N Cobalt Nickel Alloy

The density of MP 35 N is 0.304 ib/cu in. (8.41 gm/cc).
chanical properties are shownin the following tabulation.

Its typical me-

Condition

Annealed
Work strengthened

and aged

Ultimate
tensile
strength

psi N/cm_

132 000 91 000

300 000 207 000

Tensile yield
strength, 0.2%

offset

psi

53 000

290 000

N/cm_

37 000

200 000

Elongation
%in 2 in.
(5.08 cm)

68

The crystal structure of MP35 N (annealed) is fcc.

>IP35 N is a cobalt-nickel multiphase alloy combining high strength with
good ductility, toughness, and excellent corrosion resistance. It is a strain
hardening alloy that is further strengthened by a P0Ststrain aging treatment.
Strengths in the range of 260 000 psi (179 000 N/cm_) can be achieved through
combination strain hardening-aging treatments. MP 35 N has a face centered
cubic matrix of cobalt and nickel in which the alloying elements chromiumand
molybdenumare soluble at elevated temperatures. The face centered cubic
structure is retained when cooled to room temperature. A local shear transfor-
mation is induced, however, whenMP35 N is worked at temperatures below ap-
proximately 850°F (728°K), the equilibrium transformation temperature; small
platelets of a hexagonal close packed structure form (locally) within the face

13



centered cubic matrix. Unlike the martensite transformation in steel, this
transformation does not appear to have an M temperature at which it occurs on

S

cooling. The amount of the hexagonal close packed phase formed is dependent

upon the amount of strain deformation. Yhe transformed product is stable.

L-605

The density of L-605 is 0.330 ib/cu in. (9.13 gm/cc).

cal properties are shown in the following tabulation.

Its typical mechani-

Condition

Ultimate

tensile

strength

Tensile yield

strength, 0.2%

offset

psi N/cm _

130 000 90 000

Elongation

% in 2 in.

(5.08 era)
psi N/cm 2

55 000 38 000Annealed 45

The crystal structure of L-605 is hcp.

L-605 is a cobalt base alloy that is strengthened by cold work and subsequent

aging. It is used extensively in temperatures up to 2000°F (1367°K) and has rea-

sonable strength and ductility at cryogenic temperatures. The alloy is available

in most wrought forms, has good corrosion resistance, and is readily weldable.

LAI41A Magnesium Alloy

Tlle density of LAI41A is 0.048 ib/cu in. (1.36 gm/cc).

ical properties are shown in the following tabulation.

Its typical mechan-

Condition

Ultimate

tensile

strength

Tensile yield

strength, 0.2%

offset

ps i N/cm _ psi N/cm ;!

LAI41A-T7 19 000 13 000 15 000 i0 000 i0

Elongation

% in 2 in.

( 5.08 cm)

"file crystal structure of LAI41A is bcc.

LAI41A is a magnesium lithium alloy with a very low density, and relatively

good ductility and workability. It is weldable, age hardenable, and has about

the same corrosion resistance as conventional magnesium alloys.

Inconel 718

7he density of inconel 718 is 0.297 ib/cu in. (8.21 gm/cc).

mechanical properties are shown in the following tabulation.

Its typical

14



Condition

Annealed

Aged

Ultimate

tensile

strength

psi

150 000

190 000

N/cm 2

103 000

131 000

Tensile yield

strength, 0.2%

offset

psi N/cm 2

90 000 62 000

160 000 ll0 000

Elongation

% in 2 in.

(5.08 cm)

40

2O

The crystal structure of Inconel 718 is fcc.

Inconel 718, a wrought, age hardenable nickel-chromium alloy was origninal-

ly developed for elevated temperature applications. However, it has proved

suitable for cryogenic applications as well. It is work hardenable as well as

age hardenable, forms readily, is weldable, and has excellent corrosion resist-

ance. It is available in common wrought forms.

Nickel 440

The density of Nickel 440 is 0.302 ib/cu in. (8.86 gm/cc).

chanical properties are shown in the following tabulation.

Its typical me-

Composition

Annealed

½ H (half hard)

AT (hardened)

½ HT (hardened)

Ultimate

tensi le

strength

psi

95 000

130 000

215 000

245 000

N/cm 2

66 000

90 000

148 000

169 000

Tensile yield

strength, 0.2%

offset

psi N/cm 2

45 000 28 000

65 000 45 000

150 000 103 000

200 000 138 000

Elongation

% in 2 in.

(5.08 cm)

30

4

12

9

The crystal structure of Nickel 440 is fcc.

Nickel 440 is a nickel-base alloy that has cryogenic properties to -423°F

(20°K) competitive witil other materials currently used for cryogenic applica-

tions. It is an age-hardenable alloy that attains peak mechanical properties

by precipitation hardening from either the solution heat treated condition or

from various cold worked tempers. The hardening mechanism is a dispersion of

fine beryllide particles. This alloy has good elevated temperature properties

up to 800°F (700°K), good formability, and excellent corrosion resistance in a

reducing media. It is weldable by the tungsten inert gas (TIG) process.

A-286 Corrosion Resistant Steel

The density of A-286 is 0.286 ib/cu in. (7.92 gm/cc).

ical properties are shown in the following tabulation.

Its typical mechan-
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Condtion

Annealed
Aged

Ultimate
tensile
strength

psi N/cmz

105 000 72 000
140 000 97 000

Tensile yield
strength, 0.2%

offset

psi N/cmz

95 000 66 000

Elongation,
%in 2 in.
(5.08 cm)

25
15

_fhecrystal structure of A-286 is fcc.

A-286 is an austenitic precipitation hardening corrosion-resistant steel.
Additional strengthening can be achieved by cold working. Although originally
developed for elevated temperature applications it has been found to be equally
suited for cryogenic temperature applications. It is a higher strength materia]
than the 300 series stainless steels. At cryogenic tel_peratures, because of
its austenitic structure, it has good ductility and toughness. A-286 has ex-
cellent corrosion resistance, is weldable, and comparesfavorably with the 300
stainless steels in respect to forming.

PH14-8 Ho Corrosion Resistant Steel

The density of PH14-8 "qo is 0.283 ib/cu in. (7.82 g.n/cc).
mechanical properties are shownin the following tabul_tion.

Its typical

Condition (vaccum
induction melted)

A

SRH 950

CH 900

Ultimate

tensile

strength

psi N/cm _

125 000 86 000

230 000 156 000

280 000 193 000

Tensile yield

strengti_, 0.2Z

offset

psi

55 000

215 000

270 000

:q/ cm _

38 000

148 000

186 000

Elongation,

70 in 2 in.

(5.08 cm)

25

6

1.5

The crystal structure of PH 14-8 Ho, Condition A, is fcc.

Pil 14-8 i,io is a semi-austenitic precipitation hardening corrosion - resist-

ant steel. Vacuum melted material, the type used in this program, is tougher

than air melted material. In the solution-treated condition (Condition A) the

structure of this alloy is essentially austenitic. Transformation to marten-

site can be accomplished either by thermal treatment or by cold working. Ag-

ing after transformation results in additional strengti_cning. The alloy is

very formable in the annealed (solution treated) condition and is weldable.

TRIP Steel

IRIP steels represent a new class of steels that show increased ductility

at high strengths compared with other ferrous base materials. The processing

,>f N_ese steels is a fairly complex thermomechanical treatment, and the final
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properties are based on mutual interactions of solid solution strengthening,
precipitation strengthening, work hardening, and transformation (austenite to
martensite) strengthening. After the thermomechanical treatement, the struc-
ture is austenitic. The application of an applied stress induces transforma-
tion to martensite. The literature states that the good ductility shownby
these steels results from the transformation occurring during straining. This
concept led to the nameTRIP, an acronym for T__RansformationI_nducedPlasticity.
This material is not currently used in production, but was considered to have
sufficient unique characteristics to warrant investigation in this program.

21-6-9 Corrosion Resistant Steel

The density of 21-6-9 is 0.283 ib/cu in. (7.82 gm/cc).
cal properties are shownin the following tabulation.

Its typical mechani-

Condition

Annealed
Cold rolled 50%

Ultimate
tensile
strength

psi

i00 000
192 000

L_ / cm Z

69 000

132 000

Tensile yield

strength, 0.2%

offset

psi N/cm _

55 000 38 000

175 000 121 000

!

Elongation,

% in 2 in.

(5.08 cm)

40

7

The crystal structure of annealed 21-6-9 is, fcc.

The 21-6-9 material is an austenitic corrosion resistant steel. It has a

lligher annealed yield strength than the 300 series stainless steels, and like

them, it is strengthened by cold working, but not by thermal treatment. Also,

21-6-9 is comparable to the 300 series stainless steels in weldability, forma-

bility, and corrosion resistance. It is available in many common wrought forms.

5A;-2.SSn I£Li Titanium Alloy

fhe density of 5AL-2.5Sn is 0.162 ib/cu in. (4.48 gm/cc).

chanical properties are shown in the following tabulation.

Its typical me-

Condition

Ultimate

tensile

strength

Tensile yield

strength, 0.2%

offset

psi N/cm _ psi N/cm z

Annealed 120 000 83 000 115 000 79 000 I0

Elongation,

% in 2 in.

(5.08 cm)

Tile crystal structure of 5A_'-2.5Sn is hcp.

The 5A.-2.5Sn FILl titanium alloy is an alpha alloy with extra low intersti-

tial (FiLI) content, wllich improves its toughness at cryogenic temperatures.

This alloy is nonheat treatable, but has much higi_er properties than unalloyed
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titanium. It is one of the most widely used structural materials in the temper-
ature range of -320°F (78°K) to -423°F (20°K) because at those temperatures it
combinesgood ductility and fracture toughness with a high strength-to-weight
ratio. The material has good corrosion resistance, welds easily, and is availa-
ble in most wrought forms.

6A_-4VELI Titanium Alloy

The density of 6Ai-4V is 0.160 ib/cu in. (4.43 gm/cc).
ical properties are shownin the following tabulation.

Its typical mechan-

Conditi on

Annealed
SfA

Ultimate
tensile
strengtll

psi N/cm2

130 000 90 000
160 000 Ii0 000

Tensile yield
strength, 0.2%

offset

psi

120 000
145 000

i_/cm Z

83 000

I00 000

Elongation,

% in 2 in.

(5.08 cm)

i0

6

The crystal structure of 6A_-4V is hcp + bcc.

file 6A_-4V EL1 titanium alloy is an alpha-beta alloy that is heat treatable.

The ELi grade shows increased ductility and toughness at cryogenic temperatures

compared with the normal interstitial grade. This material is currently one of

the most widely used structural materials in the aerospace industry, particular-

ly for pressure vessels, because of its high strength-to-weight ratio. It is

readily available in most wrought forms, is formable, and can be welded readily.
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III. TEST PROCEDURES AND APPARATUS

During the period covered by this Interim Report, the first year of a two-

year program, 15 metallic alloys were tested. The tests were conducted to de-

termine how the room temperature longitudinal tensile properties of each alloy

were affected when the alloy was strained (uniaxia] tension) at cryogenic tem-

peratures. The procedures used to accomplish this objective are described in

following paragraphs. Eacl_ basic operation is treated separately. The opera-

tions are presented in the sequence in which they were conducted.

blateri_l Procurement and Inspection

All material was procured to an applicable specification -- Federal, Mili-

tary, or commercial -- as appropriate. The materials were procured in either

sheet or strip form and the entire lot of any material was from the same heat.

Receiving inspection tests were conducted on all the materials. These in-

cluded visual examination, dimensional inspection, chemical analysis, confirma-

tion of mechanical properties, and when appropriate, examination of the micro-
structure.

Specific information regarding the form, condition, size, and composition,

in which each material was procured are given in Chapter IV, "Test Results and
Discussion."

Preparation of Specimens

Griddin_ - To accomplish the objectives of the program it was necessary to

strain each material at four temperatures: room temperature, -II0°F (194°K),

-320°F (78°K), and -423°F (20°K). Because tensile straining has direct appli-

cation to the production c_f pressure vessels, that method of straining was used

in the program. Consequently, straining and testing were done on standard ten-

sile machines, and the specimens strained or tested were standard, flat, fric-

tion loaded or pin loaded tensile bars. To facilitate strain measurement each

specimen had a O.lO0-in. (0.254 cm) square grid pattern applied to one surface

(Fig. i). This pattern was app]ied by a photographic process. For efficiency,

the pattern was applied, not to individual specimens, but to the largest piece

of material that cou]d be obtained from the stock and accommodated by the pho-

tographic process. The largest piece of material that could be gridded was, t

(thickness) x 24 in. (60.96 cm.) wide x 24 in. (60.96 cm) long. To prepare

specimens, _he sheet or strip was first sheared into pieces of appropriate size

for gridding. Each sheared piece was marked to identify alloy and grain di-

rection, and was then griclded. The gridded stock was then sheared to specimen

blank size; t x 7/8 in. (2.22 cm) wide x 8 in. (20.32 cm) ]ong for friction

loaded specimens; and, t >: [ 5/8 in. (4.13 cm) wide x 8 in. (20.32 cm) long for

pin-loaded specimens. In each case the 8 in. (20.32 cm) dimension was parallel

to the longitudinal grain direction of the rm,' materia].
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Figure 1.- Tensile Specimens with a O.lO0-in.-square (0.254 cm)
Photogrid Pattern on their Surfaces



Machinin_ - The prepared blanks were machined in lots of 20 or more, depend-

ing on material thickness and the number of specimens to be made. The fixture

and setup used to machine the blanks into specimens are shown in Figure 2. The

use of this fixture allowed both sides of a pack of specimens to be machined

without refixturing. This was done by using precision ground Vee blocks as sup-

ports and locators for the fixture. After one side of a pack of specimens was

machined, the fixture was lifted off the Vee blocks, turned over, rotated 180 ° ,

and replaced on the Vee blocks. The other side of the pack was then machined.

The friction loaded specimen, shown in Figure 3 (a), was the type generally

used for straining and testing at room temperature, -II0°F (194°K), and -320°F

(78°K). The pin loaded specimen Figure 3 (b), was used for testing and strain-
ing at -423°F (20°K).

Establishing uniform strain capabilities - A minimum of two specimens of

each alloy were tested to failure in unia×ial tension at each of the four strain-

ing temperatures. Each alloy was tested in the same temper or condition in

which specimens of the alloy were subsequently strained. The tests were con-

ducted in accordance with the requirements and procedures of Federal Test Method

Standard No. 151 (ASTM E8-66), except that cryostats and appropriate cryogens

were used for testing at cryogenic temperatures. The purpose of these tests

was to establish the total and the uniform elongation capabilities of each alloy

at each temperature. Total elongation was measured across the fracture over a

gage of 2-in. initial length (fig. 4). Uniform elongation was measured over a

gage of 1-in. initial length (fig. 4). A 6-in. rule with 0.010-in. graduations

and a IOX magnifying glass were used to measure the elongations. An alloy's

uniform strain capability at a temperature was the term applied to the average

of the uniform elongations measured on the specimens of the alloy that had been

tested to failure at a temperature. A uniform strain capability value was es-

tablished for each material for each straining temperature.

Selection of strain levels - Three amounts of strain, target values, desig-

nated as strain levels A, B, and C were established for each alloy for each

straining temperature. These values were alloy dependent and for each alloy
were computed as follows:

Level A - 40% of the material's uniform strain capability at that tempera-

ture where the material had the least uniform strain capability;

Level B - 60% of the material's uniform strain capability at the straining
temperature;

Level C - 80% of the material's uniform strain capability at the straining
temperature.

For any alloy then, Level A was the same for all temperatures, while Levels

B and C varied with temperature. For clarification, the following tabulation

shows, for an imaginary material, the material's uniform strain capability and

attendant strain levels A, B, and C, at four straining temperatures.
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Various Temperatures
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Figure 4.- Measurement of Total and Uniform Elongations
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Straining

Temperature

o F oK

Room Room

temp temp

-Ii0 194

-320 78

-423 20

Uniform Strain

Capability, %

20.0

25.0

30.0

15.0

Strain level, %

A B C

6.0 12.0 16.0

6.0 15.0 20.0

6.0 18.0 24.0

6.0 9.0 12.0

Cryosoakin$ - Not all specimens were strained before they were tested.

Some were merely exposed to one of the three cryogenic temperatures for a peri-

od of time and then tested, or heat treated and tested, as appropriate. In the

text, figures, and the tables of the Appendix, the exposed and unstrained speci-

mens are referred to as 0% strained. Soaking at cryogenic temperature, was ac-

complished by immersing the specimens in the appropriate cryogen for a prede-

termined period of time; 5 minutes minimum at -II0°F (194°K) and -320°F (78°K);

and 30 minutes minimum at -423°F (20°K). The cryogens were: -II0°F (194°K),

a mixture of isopropyl alcohol and dry ice; -320°F (78°K), liquid nitrogen

(LN2) ; and -423°F (20°K), liquid nitrogen (LH2). Open top cryostats were used

to soak specimens at -II0°F (194°K), and at -320°F (78°K). A closed cryostat

and remotely operated closed system (for safety purposes) were used for soaking

specimens at -423°F (20°K).

Straining - For straining at room temperature, -II0°F (194°K), and -320°F

(78°K), friction loaded specimens were used and strained on one of two tensile

machines, a 5000 lb. (22 200 N) capacity machine, or a 50 000 lb. (222 400 N)

capacity machine. At -423°F (20°K) a 50 000 Ib (222 400 N) machine and pin

loaded specimens were used. All materials were strained at a rate of 0.050

in./in./min (0.050 cm/cm/min), except 6Ai-4V ELI titanium, which was strained

at a rate of 0.005 in./in./min (0.005 cm/cm/min.).

When specimens were strained at room temperature, strain was measured di-

rectly by holding a 4-in. long scale (0.010-in. divisions) against the gridded

surface of the specimen as it was being strained. Strain was measured over a

gage of 2 in. (5.08 cm) initial length. Straining was stopped when a prede-

termined amount of strain was measured. Since elastic as well as plastic

strain was measured while the specimen was under load, the strain measured un-

der load always exceeded the target strain to compensate for the elastic shrink-

age that occured when the load was released. After a specimen had been strain-

ed and removed from the tensile machine the actual amount of strain was meas-

ured and recorded. Strain was measured over a gage of 2 in. (5.08 cm) initial

length, using the grid marks, a 6-in. scale (0.Ol0-in. divisions) and a 10X

magnifying glass.
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Straining at -100°F (194°K) and at -320°F (78°K) was done on the sameten-
_i]e machines that were used to strain specimensat room temperature. Open top
cyostats and linkage systems (fig. 5) were also required. For -II0°F (194°K)
the cryogen was a mixture of dry ice and isopropyl alcohol, for -320°F (78°K)
I,N_ was used. Whenevera setup was madefor straining at either -II0°F (194°K)
or -320°F (78°K), the procedure included cooling the specimen zrips to bath
temperature by immersing them in the bath. Whenthe grips had cooled, a speci-
menwas loaded into them and the whole assembly _Jasconnected to the cryostat
and tensile machine. The level of the cryogen in the crvostat was controlled
so that the upper grip was always completely immersed. A specimenwas never
strained until it had been in the bath for at least 5 minutes. This 5-minute
delay from immersion to straining was sufficient, as determined by experimenta-
tion, to assure that thermal equilibrium between specimenand bath had been
achieved. A dial indicator was used to measureplaten tr_vel, which through
experimentation, had been correlated to strain. After a specimenwas strained
at -II0°F (194°K) or -320°F (78°K) it was <,'armedto roomtemperature and the
actual strain was measuredand recorded in the same_ay as it was on the room
temperature strained specimens.

Straining at -423°F (20°K) was done in LH2. To meet rigid safety require-
ments it was necessary to use equipment at the Liquid llydrogen Laboratory.
This equipment included a 50 000 (222 400 N) capacity tensile machine, and a
remotely operated closed system, complete with cryostat, for filling, draining
and purging the cryostat, and operating the tensile machine. Eachstrain cycle
consisted of: loading specimens into the load linkage connected to the empty
and purged co,ostat; closing the system; filling the cry{_stat with LH2; strain-
ing (platen travel was measured); draining and purging the cryostat; and re-
moving the specimens. Becauseof the complexity of this cycle, pin loaded
specimens were used. Their use permitted more than one specimen to be strained
at a time. Usually five specimenswere strained simultaneously, but the exact
quantity was dependent on the strength of the material being strained and the
50 000 ib (222 400 N) capacity of the tensile machine. After being strained,
specimenswere warmedto room temperature and the actual strain was measured
and recorded in the sameway as it was for roorLtemperature strained specimens.

Thermal treatments - All thermal treatments were performed in forced air

circulation furnaces certified to military standards except for the solution

i_eat treatment of 6Ai-4V titanium alloy that was performe_] in a vacuum furnace.

l_efore any thermal treatment the specimens _¢ere:

i) Vapor degreased;

2) Water rinsed;

3) Alkaline cleaned;

4) Water rinsed;

5) Thoroughly dried (air or oven).

Specimens that required aging at temperatures above 900°F (756°K) were

,_:_ted with a protective lacquer.
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Testing

Mechanical Properties - One-half of each set of soaked or strained speci-

mens of a heat treatable alloy were aged before they were tested. The other

specimens of each set were tested in the as-soaked or as-strained condition, as

were the specimens of nonheat treatable alloys.

Strained and soaked specimens were tested at room temperature on either a

5000 ib (22 200 N) capacity, or a 50 000 (222 400 N) capacity tensile machine,

depending upon the strength of the material. The equipment and procedures used

conformed with the requirements of Federal Test method Standard No. 151 (ASTM

E8-66). A load-strain curve was autographically recorded for each test. For

this purpose an extensometer with a 2-in. (5.08 cm) gage together with appro-

priate strain magnifying and plotting devices were used. The properties de-

termined form each test were: ultimate tensile strength; tensile yield

strength, 0.2% offset; and total elongation, percent in 2 in. (5.08 cm).

Metallurgical analyses - Metallurgical analyses were performed on selected

specimens of each material to determine their microstructure in the as-received

condition to the final processed condition. Microstructural characteristics

were studied. This study was primarily performed using standard light micro-

scopy techniques up to 750X.

Summary of Processing

In summary, the sequence of processing the materials investigated in this

program is shown in table l. When deviations were made from this sequence or

in number of specimens processed at any particular step, it is discussed under

Test Results for that particular material.
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IV. TEST RESULTS AND DISCUSSION

Aluminum Alloy 2219

A sheet of annealed 2219 aluminum, measuring O.O80x48x144 in. (0.203x122

x366 cm) was procured to material specification ASTM B 209-67. The composition
of the sheet was:

Element

Cu

_[n

Mg

Si

Fe

Zn

Ti

V

Zr

Ni

Cr

A_

Dens ity :

Percent by weight

6 15

0 26

00]

0 07

0 17

0 O3

0 O6

N 08

0 13

0.01

O.GI

Balance

0.103 ib/cu in.; 2.85 gm/cc

The 2219 aluminum specimens were prepared and processed generally as de-

scribed in Chapter III. The procedures were modified somewhat for the 2219

aluminum alloy specimens, and also for the 6061 aluminum allov specimens. The

changes were necessary because these alloys will age harden at room temperature

following solution heat treatment. This reaction, termed natural aging, can be

withheld almost indefinitely if the material is refrigerated immeditely after

it is quenched from the solution treatment temperature. As long as the material

is held at or below 0°F (255°K) natural aging will not occur. Therefore, to

compensate for the natural aging reaction and assure a unifrom starting condi-

tion for the 2219 specimens the following procedures were used.

i) The specimens were machined from the annealed sheet stock in the

normal manner, as described in Chapter III;

2) The specimens were solution heat treated, 995°F (809°K) for 50 min-

utes, and quenched in cold water;

3) Immediately after quenching the specimens were refrigerated and

stored at -30°F (239°K);

4) The specimens that were either tested at room temperature to estab-

lish the material's room temperature uniform strain capability or

strained at room temperature, were removed from the refrigerator and

immediately immersed in water that was at room temperature. Within

15 minutes from the time that the temperature of a specimen reached

room temperature the specimen was tested, or strained. The strained

specimens were then naturally aged at room temperature for a minimum

of seven days before they were further processed in the normal man-

ner, as described _n Chapter III;
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5) The specimens that were not strained at roomtemperature, but
merely exposed to room temperature, were removedfrom the refrig-
erator, warmedto roomtemperature, naturally aged at roomtemper-
ature for a minimumof seven days, and then processed in the normal
manner;

6) The specimens that were tested, strained, or e×posedat any of the
cyrogenic temperatures were kept under refrigeration until they were
placed in a cryostat and immersedin the appr_priate cryogen. The
specimens that had been cryostrained or exposed to a cryogenic tem-
perature were then warmedto room temperature and naturally aged at
room temperature for a minimumof seven days before being processed
in the normal manner.

When2219 is cold worked after it has been solution heat treated and quenched
and before it is aged the rate of strengthening during the aging treatment is
markedly increased. Consequently, highly strained material should be aged at
lower temperatures and for shorter periods of time than unstrained material.
Therefore, the 2219 aluminum alloy specimens that had to be aged were given one
of the following aging treatments, as indicated.

i) The unstrained specimens were aged for 36 hr at 375°F (465°K) and

air cooled;

2) Of each group of five specimens that had been given the same condi-

tioning treatment (strained the same amount at the same temperature)

four were aged 24 hr at 325°F (436°K) and air cooled;

3) The rest of the strained specimens were aged 18 hr at 325°F (436°K)

and air cooled.

The results of the tests conducted on the 2219 aluminum alloy specimens are

given in figures 6 through 14, and are listed in tables 2 and 3 of the Appendix.

Figure 15 shows photomicrographs of the microstructure of 22]9 in various con-

ditions.

The 2219 aluminum alloy sheet was found to have a uniform strain capability

of 21.0% at room temperature, 18.0% at -II0°F (194°K), 35% at -320°F (78°K),

and 36% at -423°F (20°K). However, the apparent advantage of a higher uniform

strain capability at -320°F (78°K) and -423°F (20°K) than at room temperature

proved to be of no significant value. _ile 2219 specimens were strained greater

amounts at both -320°F (78°K) and -423°F (20°K) than at room temperature, the

room temperature straining was almost as effective a strengthening process as

straining at either of the cryogenic temperatures.

Thus, cryostraining is not a practical method for strengthening 2219 aluminum.
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r"

Soaked aL Room Tempera-

ture, Unaged

S_aked at Room Tempera-

ture, aged 36 hr at 375°F

(465°K)

"a

(c) 17.0% Strain at Room Tem-

perature, Aged 18 hr at

325°F (436°K)

(d) 14.0% Strain at -II0°F

(194°K), Aged 18 hr at

325°F (436°K)

__ • .... _
(e) 28.0% Strain at -320°F (f) 29.0% Strain at -423°F

(78_K), Aged 24 hr at (20OK), Aged 24 hr at

325_F (436_K) 325_F (436°K)

1

Note: There were no apparent changes to the microstructure I

due to straining at different temperatures. 1

Etch: Kellers 250X
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Aluminum Alloy 5456

A sheet of annealed 5456 aluminum was procured to commercial requirements.

The sheet measured 0.063x48x144 in. (0.160x122x366 cm). An analysis was con-

ducted and the chemical composition of the sheet was determined to be:

Element Percent by weight

Mg 4.80

Mn 0.50

Si O.09

Ni 0.01

Cr 0.12

Cu 0.03

Fe 0.12

Ti 0.02

Zr 0.ii

A_ Balance

Density: 0.096 ib/cu in.; 2.66 gm/cc

This alloy belongs to the 5_XX series of aluminum alloys. Unlike the 2219

and 6061 aluminum alloys, 5456 is strengthened by strain hardening, but not by

thermal treatment. Consequently, special processes, such as refrigeration, were

not required for the 5456 specimens. They were processed in the normal manner

as described in Chapter III.

The results of the test conducted on the 5456 aluminum alloy sheet speci-

mens are given in figures 16 through 18, and are listed in tables 4 and 5 of

the Appendix. Figure 19 shows photomicrographs of the microstructure of 5456

in various conditions.

The 5456 aluminum alloy sheet has a higher uniform strain capability at the

cryogenic temperatures than at room temperature; specifically, 19.5% at room

temperature, 25.0% at -II0°F (194°K), 40% at -320°F (78°K), and 22% at -423°F

(20°K). Therefore, it is possible to work this strain-hardening alloy to higher

strengths at the cryogenic temperatures than at room temperature. This is the

only advantage that can be gained from cryostraining 5456 aluminum alloy sheet,

and this advantage is of questionable value. Other aluminum alloys of the 2_XX

and 7_XX series processed by conventional methods develop strengths greater than

the strengths that can be developed by cryostraining 5456. Also, 5456 is avail-

able in various strain hardened tempers, one such is the -H343 temper. The fol-

lowing tabulation lists the typical tensile properties of 5456-H343 sheet and

the room temperature tensile properties of 5456-0 after it was strained 31.5%

at -323°F (78°K).
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Property

Ultimate tensile strength

Tensile yield strength,
0.2%offset

Percent elongation
in 2 in. (5.08 cm)

5456-H343

Psi N/cm:

63 000 43 400

51 000 35 200

6.0 6.0

5456-0
Strained 31.5%
Psi N/cmf'

63 _00 43 600

59 300 40 900

4.5 4.5

All factors considered, cryostraining is not a practical method of strength-
ening 5456 aluminum.
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,,t.. _ _ . _, _ _ _, _ _ _,

(a) 16% Strain at Room Tem-

perature, Unaged

(b) 21% Strain at -II0°F

(194°K), Unaged

(c) 31.5% Strain at -320°F
(78_K), Unaged

_-';,'7-s-- ---_/" ". z ._':--._-__._ _--"_J"-g_ _

(d) 16% Strain at -423_F

(20=K), Unaged

Note: The effects of straining at different temperatures

are not manifest by observable changes to the

microstructure.

Etch: Kellers
200X

Figure 19.-Microstructure of 5456 Aluminum Alloy
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Aluminum Alloy 6061

A sheet of annealed 6061 aluminum measuring 0.090x48x48 in (0.229x122x122

cm) was procured to Federal Specification QQ-A-25@/II. The chemical composi-

tion of the sheet was:

Element Percent by weight

Mg _. 82

Si O .66

Fe O. 45

Cu 0.26

Mn O. _ 1

Cr O. 19

Zn O. 12

Ti _. Ol

Ni 0 .GI

A_. Balance

Density: 0.098 ib/cu in.; 2.7] gm/cc

The 6061 aluminum specimens were prepared and processed generally as de-

scribed in Chapter III. The procedures were modified somewhat for the 6061

aluminum alloy specimens, and also for the 2219 aluminum alloy specimens.

The changes were necessary because these alloys will age harden at room tem-

perature following solution heat treatment. This reaction, termed natural

aging, can be withheld almost indefinitely if the material is refrigerated

immediately after it is quenched from the solution treatment temperature.

As long as the material is held at or below 0°F (255°K) natural aging will

not occur. Therefore, to compensate for the natural aging reaction and

assure a uniform starting condition for the 6061 specimens the following pro-

cedures were used:

i) The specimens were machined from the annealed sheet stock in the

normal manner, as described in Chapter III;

2) The specimens were solution heal treated, 08N°F (800°}: ) for I hr,

and quenched in cold _at_r;

3) Immediately after quenching, the specimens were refr{gerated and

stored at -30°F (239°K)

4) The specimens that were either tested at room temperature to es-

tablish the material's room temperature uniform strain capability

or strained at room temperature, were removed from the refrigerator

and immediately immersed in water that was at room temperature.

Within 15 minutes from the time that the temperature of a speci-

men reached room temperature the specimen was tested or strained.

The strained specimens were then naturally aged at room tempera-

ture for a minimum of seven days before thev were furtiler pro-

cessed in the normal manner, as described in Chapter III;
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5)

6)

The specimens that were not strained at room temperature, but

merely exposed to room temperature, were warmed to room tempera-

ture, naturally aged at room temperature for a minimum of seven

days, and then processed in the normal manner:

'fhe specimens that were tested, strained, or exposed at anv of the

cryogenic temperatures were kept under refrigeration until they

were placed in a crvostat and immersed in the appropriate cryogen.

The specimens that had been cryostrained or exposed to a cryogenic

temperature were then warmed to room temperature and naturally

aged at room temperature for a minimum of seven days before being

processed in the normal manner.

The results of the tests conducted on the 6061 aluminum alloy specimens

are given in figures 20 through 25, and in the Appendix, tables 6 and 7. Fig-

ure 26 shows photomicrographs of the microstructure of 6061 in various condi-

tions.

The uniform strain capability of the 6061 sheet material was found to be

essentially the same at room temperature and at -II0°F (194°K), 21 and 22%,

respectively. But at -320°F (78°K) and at -423°F (2O°K) nhe uniform strain

capability was 42 and 43%, respectively, almost double the material's room

temperature capability. Therefore, since the 6061 sheet material did strain

harden, higher strengths were developed bv straining at -320°F (78°K) and at

-423°F (20°K) than by straining at room temperature. This was only because

the material was strained greater amounts at the lower temperatures. It was

the magnitude of the strain ti_at determined the properties developed by strain-

ing; strengthening was independent of straining temperature. For example,

an 8.5% strain developed essentially the same tensile properties regardless

of the temperature at which the 6061 was strained.

By making use of the increased uniform strain capability of 6061 at -320°F

(78°K) appreciably higher tensile strengths were developed at those tempera-

tures than at room temperature. Tensile strengths greater than 50 000 psi

(34 480 N/cm ? were achieved at both cryogenic temperatures, but such strength-

ening does not justify cryostraining 6061. Other aluminum allovs in the 2xxx

and 7xxx series of aluminum a]loys develop even higher strengths through nor-

mal processing. Therefore, although 6061 can be strengthened by cryostraining,

such processing is not practical.
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(a) 17% Strain at Room Temper-

ature, Aged 18 hr at 320°F

(434°K)

• 6 . . , t

(b) Soaked at -II0°F (194°K),

Aged 18 hr at 320°F (434°K)

f

•. _ _ h _

(c) Strain at -IIO°F (194°K),

Aged 18 hr at 320°F

(434°K)

z _

(d) Soaked at -320°F (78°K),

Aged 18 hr at 320°F

(434°K)

o _* ;. L

(e) Strain at -320°F (78°K),

Aged 1.8 hr at 320°F

(434°K)

III . . _

(f) Soaked at -423°F (70°K),

Aged 18 hr at 3200F

(434°K)

Note: The microstructure was not significantly changed by

straining at different temperatures. The more evident

strain lines in (a), (c), and (d) are due to the ten-

sile test rather than the pre-age straining operation.

They show structure near the fractures. Photos (b),

(e), and (f) show structure farther from the fracture.

Etch: Kellers 200X

Figure 26.- Microstructure of 6061 Aluminum Alloy
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Beryllium Copper (¢bA 17211

Six strips of annealed stock, measuring 0.050x7.25:<72 in. (O.127x18.42x

183 cm) were procured to Federal Specification qQ-d-533. The chemical composi-

tion of the strip material was:

Element }_(_<:_'r_rby weight

Be i .7<

F e <. ill

Co O. 24

Cu b;"[_nce

Density: 0.7.97 Ib/cu £n; 8.2[_ gm/cc

'fhis copper alloy, Copper bev_lopment Association Lo. ]72, is known commercially

as beryllium copper. It is an age hardening material that has excellent form-

ing characteristics in the annealed condition. After aging it has excellent

fatigue and hysteresis pr<u)erties, a high proportional limit, and is highly

creep resistant.

The beryllium copper specimens were prepared and p_-ocessed in the normal

manner, as described in Chapter lli. The specimens requiring thermal treatment

were aged for 3 hr at 600°F (589°K).

The results of the tests conducted on the beryllium copper alloy specimens

are presented in figures 27 thru 32, and are listed in tables 8 and 9 of the

Appendix. Photomicrographs of the microstructur_ of this material after vari-

ous treatments are shown in figure 33.

The beryllium copper strip material was found to have a higher uniform

strain capability at the cryogenic temperatures titan at room temperature, spe-

cifically, a 55% capability at -IIO°F (194°K), 65% at -320°F (78°K), 60% at

-423°F (20°K), compared to a 50% capability at room temperature. However, the

additional uniform strain capability of this material at the cryogenic temper-

atures proved to be of no tangible value. It was strained the greatest amount

at -320°F (78°K), 51.5%. After this cryostraining treatment, plus aging, the

material had an ultimate tensile strength of 206 400 psi (]42 300 N/cm2), a

tensile yield strength of 188 300 psi (129 830 N/cm2), and an elongation of

3.0%. But, material that was strained 39.5% at room temperature and then aged

had an ultimate tensile strength of 200 700 psi (138 400 N/cm2), a tensile

yield strength of 180 600 psi (124 500 N/cm 2) and an elongation of 2.5%. Thus,

the additional 12% strain at -320°F (78°K) resulted in only a 2.8% increase in

the ultimate tensile strength, and a 4.3% _ncrease in the tensile yield strength

of the material. Consequently, crvostraining is not a practical method for

strengthening this beryllium copper alloy.
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(a) 39.5% Strain at Room Tem-

perature, Unaged

(b)

• _i _

Soaked at -IIO°F (194°K),

Unaged

(c) Soaked at -II0°F (194°K),

Aged 3 hr at 600°F

(589°K)

(d) 43.0% Strain at -II0°F,

Unaged

(e) 44.5% Strain at -110°F

(194°K), Aged 3 hr at

600°F (589°K)

(f) Soaked at -320°F (78°K),

Unaged

Note: The strained and unaged structures are characterized

by indistinct grain boundaries and a high amount of

twinning. The aged structures show less evidence of

straining and more distinct grain boundaries.

Electroetch: CrO3 500X

Figure 33.- Microstructure of Beryllium Copper Alloy
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L-605 Cobalt Alloy

A sheet of annealed L-605, O.068x36x96 in.

to material specification A_IS-5537C.

was:

(0.173x92x244 cm) was procured

The chemical composition of this sheet

Element Percent by weight

C 0.118

S 0.011

Mn ].70

Si {i).21

Cr 19.90

Fe !.55

Ni i0.00

p 0.009

W 14.9

Co Balance

Density: 0.330 ib/cu in.; 9.]3 gm/cc

The L-605 specimens were prepared and processed in the manner described in

Chapter IIl, with one exception. After straining the specimens were remachined

to reduce the width and thus the area of the highly strained gage section to

prevent out-of-gage failures during subsequent tensile tests.

The L-605 specimens that required aging were aged 4 hr at II00°F (866°K)

and air cooled. These specimens were thoroughly cleaned and coated with

a protective lacquer before they were aged.

The results of the tests conducted on the L-605 specimens are given in

figures 34 through 39, and are listed in tables I0 and ii of the Appendix.

Figure 40 shows photomicrographs of the microstructure of L-605 in various

conditions.

The uniform strain capability of L-605 decreases as temperature decreases.

Also, a given amount of strain produces about the same strengthening effect re-

gardless of whether the material is strained at room temperature or at a cryo-

genic temperature. Consequently, there is no advantage to be gained from cryo-

straining L-605.
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MP 35 N Cobalt-Nickel Multiphase Alloy

A sheet of annealed MP 35 N, O.060x30x48 in. (0.152x76x122 cm) was procured

to commercial requirements. The chemical composition of this sheet was:

Element Percent by weight

Ni 33.5

Co 38.9

Cr 18.6

Mo 7.2

Density: 0.304 Ib/cu in.; 8.41 gm/cc

Because of the comparatively small size of the MP 35 N sheet available for

the program it was necessary to strain less than the normal amount of specimens

at each temperature. Normally, for a heat-treatable alloy, 40 specimens were

conditioned at each temperature, for MP 35 N, only BO specimens were conditioned

at each of the four temperatures.

Another deviation from normal processing was that the specimens were re-

machined after they were strained to reduce the width, and thus the area, of

the highly strained gage sections to prevent out-of-gage failures during sub-

sequent tensile tests.

The MP 35 N specimens that required aging were aged 4 hr at 900°F (756°K)

and air cooled. These specimens were thoroughly cleaned and coated with a

protective lacquer before they were aged.

The results of the tests conducted on the MP 35 N specimens are given in

figures 41 through 46, and are listed in tables 12 and 13 of the Appendix. Fig-

ure 47 shows photomicrographs of the microstructure of _ 35 N in various condi-

tions.

MP 35 N has a higher uniform strain capability at cryogenic temperatures

than at room temperature, specifically, 55% at room temperature, 70% at -II0°F

(194°K), 70% at -320°F (780K) and 75% at -423°F (20°K). Also, a given amount

of strain will result in higher strengths as the temperature at which the mate-

rial is strained is lowered. For example, when strained 22% at room temperature

and aged the _ 35N sheet had an ultimate tensile strength of 155 000 psi

(107 000 N/cm2), a tensile yield strength of 128 900 psi (@8 800 N/cm2), and

an elongation of 32.0%. After being strained 22.5% at -320°F (78°K) the MP 35

N sheet had an ultimate tensile strength of 163 400 psi (112 700 N/cm2), a

tensile yield strength of 147 000 psi (i01 400 N/cm2), and an elogation of

27.5%. Straining at cryogenic temperatures is a method by which MP 35 N can be

strengthened. Also, since this alloy can be strained greater amounts at the

cryogenic temperatures than at room temperature, much higher strength can be

developed through cryostraining than by straining at room temperature.
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However, whenMP35 N was strained at any of the four temperatures to ap-
proximately 80%of its uniform strain capability at the temperature, its
elongation was reduced to 2 to 3%(except 8.5%at room temperature), and its
tensile yield strength equaled or almost equaled its ultimate strength.
Consequently, the toughness of the material after it has been highly strained
at any temperature is questionable.

The program covered by this report was conducted to determine whether or not
the alloys investigated during the course of the program could be strengthened
more by straining them at cryogenic temperatures than by straining them at room
temperature. _ 35 N is a multiphase cobalt-nickel alloy that is strengthened
by strain hardening and aging. Strain induces a local shear transformation in
which platelets of a hexagonal close packed structure form within the face cen-
tered cubic matrix. The amountof transformation product formed is dependent
upon the amount of strain deformation. The results of the tests conducted
on the MP35 N sheet show that MP35 N develops higher strength for a given
amount of strain when it is strained at cryogenic temperatures comparedto
room temperature straining. From this it can be hypothesized that the strain-
induced transformation, by which this alloy is strengthened, is enhancedwhen
the alloy is strained at cryogenic temperatures, and that cryostraining increases
the alloy's response to aging. The combination of these effects, as shownby
the test results, makecryostraining a method by which _ 35 N can be signifi-
cantly strengthened. Further characterization studies of MP35 N should be con-
ducted when the material is more readily available in sheet form.
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i_i _ _ _-_ !_ _ _

(a) Soaked at Room Temperature,

Unaged

(b) Soaked at Room Temperature,

Aged 4 hr at 900°F (756°K)

(c) 44.0% Strain at Room Tem-

perature, Aged 4 hr at

900°F (7560K)

(d) 53.5% Strain at -II0°F

(194°K), Aged 4 hr at

900°F (756°K)

(e) 56.5% Strain at -320°F

(78°K), Aged 4 hr at

900°F (756°K)

(f)

,I

60.0% Strain at -423°F

(20°K), Aged 4 hr at

900°F (756°K)

Note: The appearance of the structure in (a) indicates
that the differences in structure evident in (a)

through (e) are the result of testing the speci-

mens to failure rather than the effects of

straining at the different temperatures.

Electroetched: 10% Oxalic acid 250X

Figure 47.- Microstructure of MP 35 N Cobalt-Nickel Alloy
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LAI41A Magnesium Alloy

Two pieces of LAI41A-T7 magnesium alloy sheet, O.090x36x48 in. (0.229x92

x122 cm), were procured to material specification A>_S 4386. The chemical com-

position of the sheet stock was:

Element Percent by weight

A_ 1.07

Li 13.70

Na 0.0043

Fe .002

Mn .058

Mg Balance

Density: 0.049 ib/cu in.; 1.36 gr/cc

The LAI41A specimens were prepared and processed as described in Chapter

III. Since the sheet stock had been procured in the stabilized -T7 condition

[aged 6 hr at 350°F (450°K)], aging after straining was not appropriate. How-

ever, because specimens had been prepared, a number of poststrain low tempera-

ture aging treatments were attempted.

The results of the tests conducted on the as-strained LAI41A specimens are

given in figures 48 through 50, and are listed in tables 14 and 15 of the

Appendix, in which the results of the tests conducted on the heat treated

specimens are also listed. Figure 51 shows photomicrographs of the structure

of LAI41A.

Neither cryostraining nor the postcryostraining aging treatments produced

any significant strengthening effects on the LAI41A-T7 sheet material.

83



16.0 x i0 :_

I

i ] I ] J _Ll-Sheet, 0.090 in. (0.229 cm) thi

15.5

nj

u 15.0

5

14.5

14.0

_J

<>

I/J/
AH \

/

E]

Sym bo I
Prestraining
temperature

°F °K

Q Room temp

[3 -110

A -320

-423

/
/

Room temp

194

78

20

\
\

0 4 8 12 16

Prestrain, percent

2O

Figure 48.- Ultimate Tensile Strength of Prestrained LAI41A /.lagnesium Alloy

84



15

q-
q-
o 14

O,d

c;

f,,_

% 13
°r-,

e--=

12

Figure 49.- Tensile Yield Strength of Prestrained LA141A-T7 Magnesium Alloy

85



10

@ ,:I

Pros ira i_c.c, _,cr c<.r_t

Figure 50.- Total Elongation of Prestroincd _ _ '_- .... _nesiuH_ Alloy

_6



(a) Soaked at Room Temperature,

Unaged (150X)

(b) 4.0% Strained at Room Tem-

perature, Aged 3 hr at

150°F (339°K) (250X)

(c) 4.0% Strained at -320°F

(78°K), Aged 3 hr at

225°F (381°K) (150X)

(d) 9.0% Strain at -423°F (20°K),

Aged 6 hr at 350°F (4500K)

(250X)

Note: There were no observable changes to the micro-

structure due to straining at the different

temperatures.

Etch: HNO 3 + Ethylene glycol

Figure 51.- Microstructure of LAI41A Magnesium Alloy
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Inconel 718

A sheet of annealed Inconel 718, 0.09x35xl10 in. (0.229x89x279 cm) was pro-

cured to the requirements of General Electric material specfication B50 TFI4A-S4.

The chemical composition of the sheet material was:

Element Percent by weight

Ni 54.40

Fe 18.36

Cr 17.39

Ai 0.60

Ti ].01

Cb 4.93

Mn 0.04

C 0.04

Mo 2.93

S 0.007

Si 0.18

Ta 0.01

Co 0.03

P 0.01

Density: 0.297 ib/cu in; 8.21 gm/cc

The Inconel 718 specimens were prepared and processed in the normal manner

described in Chapter III, with one exception. That exception was that the gage

sections of the specimens were remachined after the specimens were strained.

This operation was added to reduce the width, and thus the area, of the highly

strained gage section to prevent out-of-gage failures during subsequent tensile

tests.

A variety of aging treatments are recommended for Inconel 718. Some are

single temperature treatments, while others are double temperature treatments.

For this program two of the more easily controlled single temperature treat-

ments were selected because they were considered equally valid for developing

comparative straining response data. The Inconel 718 specimens that were aged

were given one of the following treatments, as indicated.

i) The unstrained specimens were aged 16 hr at 1325°F (992°K) and air

cooled;

2) Of each group of five specimens that had been given the same condi-

tioning treatment (strained the same amount at the same temperature)

four were aged 16 hr at 1275°F (964°K) and air cooled;

3) The rest of the strained specimens were aged 16 hr at 1325°F (992°K)

and air cooled.

The specimens were cleaned and coated with a protective lacquer before

aging.
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The results of the tests conducted on the Inconel 718 specimens are given
in figures 52 through 60, and are listed in tables 16 and 17 of the Appendix.
Figure 61 shows photomicrographs of the microstructure of this material in var-
ious conditions.

The uniform strain capability of Inconel 718 is greater at the cryogenic
temperatures than at roomtemperature, 49%at room temperature, 55%at -IIO°F
(194°K), 60%at -320°F (78°K), and 57%at -423°F (20°K). Because Inconel 718
can be strained greater amounts at the cryogenic temperatures than at room tem-
perature, it is possible to develop higher strengths at those temperatures than
at room temperature. This, however, is the only advantage to be gained by
cryostraining Inconel 718, and it is a small advantage. WhenInconel 718 was
strained 48.5% (80%of its uniform strain capability) at -320°F (78°K), it had
an ultimate tensile strength of 244 200 psi (168 400 N/cm2), a tensile yield
strength of 239 200 psi (164 900 N/cm2), and an elongation of 8.5%. By compar-
ison, after it was strained 39.0%at room temperature (80%of its uniform strain
capability), it had an ultimate tensile strength of 228 500 psi (157 600 N/cm2),
a tensile yield strength of 223 600 psi (154 200 N/cm2), and an elongation of
13.5%. So, the additional 9.5% strain imparted to the material at -320°F in-
creased both the ultimate tensile strength and the tensile yield strength of
the material approximately 7%,while its elongation was reduced from 13.5% to
8.5%.

Judging the response of Inconel 718 to cryostraining on the basis of equal
strains, cryostraining offers no advantage at all. A given amount of strain
will develop essentially the sametensile properties regardless of whether the
material is strained at room temperature, -II0°F (194°K), -320 °F (78°K), or
-423°F (200K).

Cryostraining is not a practical method of strengthening Inconel 718.
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Aged 16 hr at 1325°F

(992°K)

(c)

I j

38.5% Strain at Room Tem-

perature, Aged 16 hr at
1325°F (992°K)

(d) 45.0% Strain at -423°F

(20°K), Aged 16 hr at

1325°F (992°K)

(e)

- im1_

42.5% Strain at -II0°F

(194°K), Aged 16 hr at

1325°F (992°K)

(f) 48.0% Strain at -320°F

(78°K), Aged 16 hr at

z325oF (992°K)

Note: The grain boundaries of the aged structures are

more distinct than those of the unaged structure.

The strained structures show some twinning.

Electroetch: HCL + Methanol 250X

Figure 61.- Microstructure of Inconel 718 Nickel Alloy
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Nickel 440

Nickel 440 was procured in strip form. A total of 60 ft of 0.062 in. thick

by 3 in. wide (1828x0.157x8 cm) strip was procured to commercial requirements.

Tile chemical composition of this materials was:

Elemen! t'_.rce:tlt by weight

Be 2.30

Ti 0.35

Si 0.23

Ni Balance

Density: 0.302 Ib/cu in.; g.86 gm/cc

The Nickel 440 specimens were p;-epared and proc_Jssed in the normal manner ex-

cept that they were made from strip r_ither titan slteet. Also, after Nickel 440

specimens were strained they were remachined to reduce the width and therefore

the area of the highly strained gage section. This was done to prevent out-of-

gage failures during tensile te._ts.

Nickel 440 is an age hardenable nickel alloy. The aging cycle selected for

the unstrained specimens was 1.5 hr at 970°F (795°K). Strained specimens were

aged 1.5 hr at 930°F (773°K).

The results of the tests conducted on Nickel 440 specimens are given in

figures 62 through 67, and are listed in tables 18 and 19 of the Appendix.

Figure 68 shows photomicrograpi_s of Nickel 44¢ Hicrostructure in various condi-

tions.

The Nickel 440 strip material was found to have a uniform strain capability

of 37.0% at room temperature, 42.0% at -IIO°F (_94_K), 43.0% at -320°F (78°K),

and 50.0% at -423°F (20°K).

Exposure to the cryogenic temperatures did _<,t change the room temperature

tensile strength of the Nickel 440 strip. A]so, the temperature at which this

alloy was strained did not significantly influence the strength developed by

a given amount of strain. Whether tile material was strained at room tempera-

ture or at one of the cryogenic temperatures, a given amount of strain developed

essentially the same tensile properties. The only advantage gained by strain-

ing Nickel 440 at cryogenic temperatures is that greater strains are possible

at cryogenic temperatures than at room temperature. Consequently, the greater

strain hardening possib]e at the cryogenic tempera._ures permits the develop-

ment at higher strengths at thc,.qe temperatures than at room temperature.
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Figure 63.- Ultimate Tensile Strength of Prestrained Nickel 440
Aged 1.5 hr at 930°F (773°K)

102



140 i0 B

2OO

180

120-

160

o

I00

cu

LZ

%
•_ 80

6O

4O

0 10 20 30 40

Prestrain, percent

5O

Figure 64.- Tensile Yield Strength of Prestrained Nickel 440

103



200 x 10 3

J

4.--
O

-=_ 160 _- ..-
E u_

Cn U ._
E

Z

%
.r=

>_

(D
r---

"E 140 _-
E
_ [

t- i
I

I

I

120 --

!

i
i

Symbol
J

25O O

F1

A

<>
e

230 ...... i

210 ....

Prestraining
temperature

Room temp

-II0

-320

-423

i

Room temp

194

78

20

I ,
I :

190 !I
:

i

170

150
0

i
i

....... + _ ...... - I! i
i

| i i

I

I ! i L L i '

Note: Strip, 0.062 in. (0.157 cm) thickJ _._
0% prestrain, aged 1.5 hr at
970°F (795°K).

0 20 30 40 50

Prestrain, percent

104

Figure 65.- Tensile Yield Strength of Prestrained Nickel 440, Aged 1.5 hr at
930°F (773°K)
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w

Soaked at Room Temperature,

Unaged

(b) Soaked at Room Tempera-

ture, Aged 1.5 hr at 930°F

(773°K)

_.mb_

(c) 33.0% Strain at -II0°F

(194°K), Aged 1.5 hr at

970°F (795°K)

(d) 42.5% Strain at -423°F

(20°K), Aged 1.5 hr at

970°F (795°K)

(e) 29.5% Strain at Room Temp-

erature, Aged 1.5 hr at

970°F (795°K)

(f) 34.0% Strain at -320°F

(78°K), Aged 1.5 hr at

970°F (795°K)

Note: Neither straining at temperature nor aging produced al

distinguishable affect on the microstructure. I

Electroetch: HCL + Methanol 200X

Figure 68.- Microstructure of Nickel 440
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A-286 Corrosion ResL_t.,::L : Lee]

A sheet of annealed A-286 corrosion resistant steel measuring 0.055x36xl14

in. (0.140x91x290 cm) was procured to the requirements of material specifica-

tion AMS 5525B. The chemical composition of thLs sheet was:

Element PerceHt by Weight

C _ .!058

Hn ] . 58

p i_ .{)22

S 0.012

S i 0. _ 7

Cr ] _. 70

Ni 2'3.63

Cu _).29

Ti 2.22

Ho ] .21

A£ 0.06

V 0.48

B (}.0056

Fe Balance

l)ensitv: 0.286 Ib/cu in.; 7.92 gm/cc

The normal proceudres described in Chapter III were used to prepare and process

the A-286 specimens.

A-286 is an austenitic precipLtation hardening stainless steel. This alloy

can be strengthened by co]d work, by ti]erma] treatment, or by combination cold

work-aging treatments. Regarding aging treatments, for maximum strengthening of

cold worked A-286 it is necessary to lower the aging temperature relative to the

amount of work imparted to the material. The aging treatments used were selected

after reviewing available data. For the unstrained specimens the normal aging

treatment of 1325°F (992°K) for 16 hr was selected. Two aging treatments were

selected for the strained specimens, one that was best for highly strained spec-

imens and another that was more appropriate for the ]esser strained specimens.

The A-286 specimens that were aged were given one of the following treatments,

as indicated:

i) The unstrained specimens were aged 16 I_r at 1325°F (992°K) and air

cooled;

2) Of each group of five specimens that had been given the same condi-

tioning treatment (strained the same amount at the same temperature)

four were aged 16 hr at II50°F (894°K) and air cooled;

3) The rest of the strained specimens we_*{e aged 16 hr at 1250°F (951°K)

and air cooled.

Before aging, the specimens were thoroughly cleaned and coated with a pro-

tective lacquer.

The results of the tests conducted on the A-286 specimens are given in fig-

ures 69 through 77, and listed in tables 20 and _i of the Appendix. Figure 78

shows photomicrographs of the microstructure of A-?S6 in various conditions.
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The A-286 sheet material was found to have a higher uniform strain capabil-
ity at the cryogenic temperatures than at room temperature; specifically, 36.0%
at room temperature, 44%at -II0°F (194°K), 72.5%at -320°F (78°K), and 65%at
-423°F (20°K).

Exposure to the cryogenic temperatures had no affect on the room temperature
tensile properties of A-286. Also, the temperature at which the material was
strained did not significantly affect the resultant properties. A given amount
of strain produced essentially the sameproperties, regardless of the tempera-
ture at which the material was strained.

The only advantage that can be gained from cryostraining A-286 is that at
cryogenic temperatures greater strains are possible than at room temperature;
therefore, since this alloy strain hardens, higher strengths can be developed
at the cryogenic temperatures than at room temperature. Consider the specimens
that were strained to 80%of their uniform strain capability at temperature.
The specimen strained at roomtemperature were strained 29.0%. After aging at
1250°F (951°K) the material had an ultimate tensile strength of 184 I00 psi
(126 900 N/cm2) a tensile yield strength at 173 800 psi (119 800 N/cm2) and an
elongation at 11.5%. The specimensstrained 57.5% at -320°F (78°K), after aging
at II50°F (895°K), had an ultimate tensile strength of 219 200 psi (151 i00
N/cm2), a tensile yield strength at 216 600 psi (149 300 N/cm2) and an elonga-
tion of 5.5%. The additional straining at -3200F (78°K), 28.5%, resulted in a
19%increase in the ultimate tensile strength, a 24.6% increase in tensile yield
strength, while elongation was reduced by somewhatmore than 50%. These are
rather sizeable changes. But, only two aging treatments were used for the
strained specimens, so caution must be exercised in analyzing these reactions.
For example, the test results indicate that the material that was strained 57.5%
at -320°F (78°K) and then aged for 16 hr at 1250°F (951°K) was overaged. Con-
versely, the results indicate that the material strained 29.0% at room temper-
ature and aged for 16 hr at II50°F (894°K) was underaged. It is possible that
neither of the aging treatments is the best for either of these conditions.
However, considering the data available, two facts emerge:

i) For strains of 36%(the room temperature uniform strain limit) or
less there is no advantage to be gained from cryostraining A-286;

2) At cryogenic temperatures A-286 can be strained more than 36%,and
the greater strains will develop higher tensile strengths. For
someapplications this method of strengthening A-286 might be
feasible.

109



c_

(1J
J

c

4J

E

%

120

110

100

90

8O

7O

10" "

170_

160'
/

/

!

T

150_

140f

130[

Symbol

0

[]

A

0

t

Prestraining
temperature

°F °K

Roo'!l t emp

-110

-320

-423

Room temp

194

78

2O

120_

ii0 _

I00_

9O

Note :

i0 20 ..... 3(_

Sheet, O. 5_ u. (r laO cm) thick.

40 50 60 7U

i ;
[

i

i i
' i
i ii

80 90

]

Prestrain, p_'rc_rLl

Figure 69.- Ultimate Tensile Strength of Prestrained A-286 Corrosion
Resistant Steel

I00

ilO



_c

c

4-)
cn

(Dc_

4_

QJ

E

150 x 103

14C

130

120

ii0

10C

I

0 i0 20

Note : Sheet, 0.055 in. (0.140 cm) thick.
0% prestrain, aged 16 hr at 1325°F
(992°K).

Figure 70.- Ultimate Tensile Strength of Prestrained A-286 Corrosion
Resistant Steel, Aged 16 hr at II50°F (894°K)

ill



.E

%

150 x I0:_

140--

130 -

126 -

ii0--

i00 -

2ioL-

I

!

Note: Sheet, 0.055 in. (0.140 cm) thick. I _

0% prestrain, aged 16 hr at 1325°F I(992°K) ,

180 ............

!

Symbol

i

i
i

i

Prestrainin9
temperature

°F °K

() Room temp

rl -ii0

A -320

<_ -423

I

I

I

Room temp

194

78

2O

i

!

20 30 40 50 60 70 80

Prestrain, percent

9O 100

Figure 71.- Ultimate Tensile Strength of Prestrained A-286 Corrosion
Resistant Steel, Aged 16 hr at 1250°F (951°K)

112



(_
u_

0

L_
_5

_c:

_,j

(_

'K

ch

g
F--

120 x l0 B

100

160 ..........

i

l

i i
Prestrainlng
temperature

°F °K

8O

6O

4O

2O

s,mbo,
- --4

100 .... $ _-_ r;1

A

i

t

te:

0 i0 20

i

i

Room temp

-ii0

-320

-423

Room temp

194

78

2O

i

Sheet, 0.055 in. (0.140 cm) thick.

3O 40

!

i
I

i

i
!

i

.... 4- --_ 4 ,

{ i '_ l_ J
50 60 70 80 90 I00

Prestrain, percent

Figure 72.- Tensile Yield Strength of Prestrained A-286 Corrosion
Resistant Steel

113



4_

_Q
q-
4--
0

c5

4-_ E
CDh_
c--_

%
o_

"E
(--

QJ
F--

150 x 10 3

140 -

,r=-

120 -

I00 -

80-

I

Note- Sheet, 0.055 in. (0.14.0 cm) thick.
0% prestrain, aged 16 hr at 1325°F
(992°K).

200

180

160

140 ....
I
i
1

120 --

Symbo I

Q

[]

A

<>

Prestraining
temperature

°F °K

Room temp

194

78

2O

10C .....
0 I0 20 30 40 50 60 70 80 90

Prestrain, percent

Figure 73.- Tensile Yield Strength of Prestrained A-.,,'_ Corrosion Resistant
Steel, Aged 16 hr at 1150°F (894°K)

114



6'>
4--
4--

0

C_

=_
_cq

"I0

(D

u9
r-

l--

130 x 103

120 -

ii0 -

i00 --

90-

80-

70-

180

170

160

150

140

130

120

110

i00
0 10 20 30 40 50 60 70 80

Prestrain, percent

90 i00

Figure 74,- Tensile Yield Strength of Prestrained A-286 Corrosion Resistant
Steel, Aged 16 hr at 1250°F (951°K)

115



cO
o

L_

u

o.

c
o

o

%

%
0

Note :

T T

I !

i i

Sheet, 0.055 in. (0.140 cm) thick. I,

Prestrain, percent

Figure 75.- Total Elongation of Prestrained A-286 Corrosion
Resistant Steel

116



25 Note: Sheet, 0.055 in. (0.140 cm) thick.
0% prestrain, aged 16 hr at 1325°F
(992°K),

Symbol

I
!

Prestraining
temperature

°F °K

Q

[]

A -320

<_ -423

Room temp

-110

Room temp

194

78

2O

0 10 20 30 40 50 60 70 80 90

Prestrain, percent

I00

Figure 76.- Total Elongation of Prestrained A-286 Corrosion
Resistant Steel, Aged 16 hr at 1150°F (894°K)

117



35_....

0 .....

i ' "
I

i

I
i

i i

Sheet, 0.055 in. (0.140 cm) thick.
0% prestrain, aged 16 hr at 1325°F
(992°K).

i
i

i

!
_ -- _ " -4 ¸ " t

I

Symbol

! ;
p

4

I i

I

i , i ,

Prestraining
temperature

oF o K

Room temp

194

78

20
i

Room temp

-110

-320

-423

10 20

I

...... L i
i

I
I

i

i

i I =
i

i

70 80 90 I00
i......

0 30 40 50 60

Prestrain, percent

Figure 77.- Total Elongation of Prestrained A-286 Corrosion
Resistant Steel, Aged 16 hr at 1250°F (951°K)

118



7T.

(a) Soak at Room Temperature,

Unaged

• _ ,_""

"-: 7

¢-

(c) 29% Strain at Room Temper-

ature, Aged 16 hr at II50°F
(894°K)

/

(e) Soak at -423°F (20°K),

Unaged

(b) Soak at Room Temperature,

Aged 16 hr at 1325°F

(992°K)

(d) 33.5% Strain at -II0°F

(194°K), Aged 16 hr at

IIS0°F (894°K)

(f) 49.5% Strain at -423°F

(20°K), Aged 16 hr at

II50°F (894°K)

(g)

1111t,_ ,,

57.5% Strain at -320°F

(78°K), Aged 16 hr at
II50°F (894°K)

Note: Aging has no marked effect on the appearance of the

microstructure. Twinning becomes more evident with

increasing strains.

Etch: HCL + HNO 3 + Acetic acid

Figure 78.- Microstructure of A-286 Corrosion Resistant
Steel

250X

119



PH 14-8 Mo Corrosion Resistant Steel

A sheet of annealed PH14-8 Mocorrosion resistant steel 0.070x36x120 in.
(0.178x91x305 cm) was procured to North American Aviation materials specifica-
tion MBOI60-015. The chemical composition of the sheet material was:

Element Percent by weight

C 0.038
_ 0. i0
P @.003
S ¢].004
Si 0. i0
Cr 14.95
Ni 8.31
Mo 2.15
Ai 1.17
N 0.005
Fe Balance

Density: 0.283 Ib/cu in; 7.852 gm/cc

With one exception the PH14-8 Mo specimenswere prepared and processed accord-
ing to normal procedures as described in Chapter III. The exception was that an
additional machining operation was performed. The specimenswere remachined
after they had been strained. The width, and thus the area of the highly
strained gage sections of the specimens, was reduced to prevent out-of-gage
failures during subsequent tensile tests.

The PH14-8 Mo specimens that had to be aged were aged at 900°F (756°K) for
1 hr and air cooled. These specimenswere thoroughly cleaned and then coated
with a protective lacquer before they were aged.

PH14-8 Mo is a semi-austenitic precipitation hardening steel. In the solu-
tion treated or annealed condition the structure of this steel is austenitic.
Transformation of austenite to martensite can be accomplished in either of two
ways, by thermal treatment, or by cold working. The thermal treatment for PH
14-8 Morequires that the material be heated to and held at 1700°F (1200°K) for
1 hr to condition it for transformation. Then, it must be cooled to -IO0°F
(200°K) and held at that temperature for 8 hr to transform the austenite to
martensite. An aging treatment, at either 950°F (782°K) or 1050°F (840°K) fol-
lows the transformation treatment. The conditions after aging are identified
as SRH950 and SRH1050, respectively. The cold-work treatment is normally a
mill treatment. Annealed PH14-8 Mo is transformed to martensite by heavy cold
reduction. It is then aged at 900°F (755°K) for 1 hr. The condition after
aging is CH 900. For this program the CHtreatment _as selected because by
following this procedure the material could be strained in the annealed (austen-
itic) condition.

The results of the tests conducted on the PH14-8 Mospecimens are given in
figures 79 through 84, and are listed in tables 22 and 23 of the Appendix.
Photomicrographs of the microstructure of this material after various treatments
are shownin figure 85.
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PH14-8 Mohad less uniform strain capability at the cryogenic temperatures
than at room temperature, specifically, 21.0% at room temperature, 13.0%at
-IIO°F (194°K), 18.5% at -320°F (78°K), and 15.0%at -423°F (20°K). Exposure
to the cryogenic temperatures did not change the room temperature tensile prop-
erties of this steel. However, straining PH 14-8 Moat cryogenic temperatures,
particularly at -320°F (78°K), proved to be a muchmore effective strengthening
treatment than room temperature straining. The room temperature tensile prop-
erties of PH14-8 Mo, after aging, are listed in tile following table. The spec-
imens were aged 1 hr at 900°F (755°K) after exposure to temperature or straining
at temperature.

Straining
temperature

oF oK

Room Room

Temp Temp

-ii0 194

-320 78

-423 20

Amount Ultimate tensile
strained strength,

% psi N/cm2

0
5.5

13.5

17.5

0
5.5

7.0
i0.0

0

6.5

10.5

14.5

0

4.5

7.8

i0.2

127 800
139 900

199 700
231 400

129 400
214 800

249 700
271 700

130 300

250 500

305 400

329 400

130 400

164 900

260 O001

284 30O

88 i00

96 500
137 700

159 600

89 200
148 i00

172 200
187 300

89 800

172 700

210 600

227 i00

89 900

113 700

179 300

196 000

Tensile yield
strength, 0.2%

offset

psi N/cm?

54 700 37 700

87 400 60 300

197 600 136 200

231 I00 159 300

55 400 38 200
195 300 134 700

247 500 170 700

271 700 187 300

54 000 37 200

18] 800 125 400

298 200 206 000

326 800 225 300

54 ]00 37 300

76 600 52 800

217 900 150 200

261 200 180 I00

Elongation, percent

in 2 in. (5.08 cm)

28.0

27.5

i0.0

4.0

28.0

7.0

7.0

6.5

27.5

6.5

6.0

5.0

27.5

8.0

i0.0

7.0
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On the basis of the test results it can be hypothesized that straining at
cryogenic temperatures enhancesthe austenite to martensite transformation and
mayincrease the aging response of PH14-8 Mo. Cryostraining is definitely a
process by which the room temperature tensile strength of PH14-8 Mocan be in-
creased. However, there are indications that the toughness of this alloy is
affected when it has been highly strained. Further investigation of this alloy
to determine the effects of cryostraining on its toughness, corrosion resistance,
and other properties is recommended.
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(a) Soaked at Room Temperature,

Unaged

(b Soake_] at !_<_,m" Temperature,

Aged I hL at 900°F (756°K)

(c) Soaked at -423°_ _ (20°K),

Unaged

(d) Soaked at -423°F (20°K)

Aged i hr at 900°F (756°K)

(e) 14.5% Strain at -320,F

(78°K) , Unaged

(f) 12.0% Strain at -423°F

(20°K), Aged 1 hr at 900°F

(756°K)

Note: Soaking at different temperatures did not change the

microstructure of either the aged or the unaged

material. Straining induced a partial transforma-

tion at austenite to martensite.

Electroetch: HCL + Methanol 750X

Figure 85.- Microstructure of PH 14-8 Mo Corrosion Resistant Steel
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TRIP Steel

This material was procured in the form of strip, 0.ii0 in. thick x 6½ in.

(0.279x17 cm) wide. A total of 36 ft (1097 cm) of the strip stock was procured

to commercial requirements. The chemical composition of the material was:

Element Percent by width

C 0.30

_hn 2.03

Si 2.03

Cr 9.35

Ni 8.30

Mo 3.60

Fe Balance

The designation TRIP is an acronym for TRansformation I_nduced Plasticity. This

designation has been applied to a new class of high-strength, ductile steel

alloys. The initial structure of these steels is highly deformed austenite,

that will transform to martensite during straining. The strip material used

in the program was procured in the "TRIP processed" condition, a mill condition.

TRIP steel proved to be an interesting material that was very difficult to

work with. It was difficult to shear, machine, strain, and test.

A number of special procedures were required for this steel:

i) Only pin-loaded specimens of the type shown in figure 3(a) were

used, grip loading was not practical;

2) The as-rolled surface of the strip material proved to be unsuitable

for straining and testing. Consequently, the gage portion of all

the TRIP steel specimens was ground. An equal amount of material,

0.i00 in. (0.025 cm) minimum, was removed from both sides, reducing

the thickness of the gage section to approximately 0.090 in. (0.229)

cm). After grinding, the specimens were electropolished to remove

an additional 0.003 to 0.005 in. (0.008 to 0.013 cm) of stock from

all surfaces;

3) The TRIP steel strained plastically in a progressive manner. Usually

plastic strain began at one end of a gage section and slowly prog-

ressed the entire length of the gage. Progressive plastic strain-

ing would then begin again, usually at the same location that the

initial plastic strain had occurred, but most of the time fracture

would occur before the entire gage had strained a second time.

Straining could be followed by observing the changing width and

thickness of the specimen at the location where strain was occurring

at any given instant. To illustrate this phenomena, several speci-

mens that were being tested at room temperature fractured near mid-

gage before the entire gage had strained plastically. Because the

specimens had been photogridded with a 0.i00 in. (0.254 cm) square
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grid pattern it was possible to measure strain on both sides of the

fracture. On one side of the fracture a uniform strain of from 15

to 20% was measured while on the other side of the fracture the

strain was too small to measure. Because of this progressive mode

of straining, the TRIP steel specimens were strained not to three

strain levels at each temperature, as stated in Chapter III, but

to only one. The specimens were strained until the entire gage sec-

tion had strained once, to provide a more or less uniform plastic

strain throughout the gage, and then the load was released;

On all specimens tested at -423°F (20°K), 0% uniform plastic strain

was measured. Consequently, no TRIP steel specimens were strained

at -423°F (20°K).

The results of the tests conducted on the TRIP steel specimens are given in

figures 86 through 91, and listed in tables 24 and 25 of the Appendix. Photo-

micrographs of this material after various treatments are shown in figure 92.

The TRIP steels have been designed to transform from austenite to martensite

when they are strained. Because straining is more easily accomplished at room

temperature than at cryogenic temperatures there is no advantage to be gained

from cryostraining TRIP steel.
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"_ _i_ " _ _ _ ,_i ......

(a) Soaked at Room Temper-

ature, Aged 0.5 hr at

750°F (673°K)

(b) 8.0% Strain at -3200F

(78°K), Aged 0.5 hr at

7500F (673°K)

Note: The microstructure of this material was so severely

affected by the room temperature tensile test to

failure that the results of pretest treatments

could not be evaluated.

Figure 92.- Microstructure of TRIP Steel
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21-6-9 Corrosion Resistant Steel

One sheet of 21-6-9 corrosion resistant steel was obtained and used in the

program. The sheet, which was procured to commercial requirements measured,

O.062x48x48 in. (O.157x122x122 cm). A chemical analysis showed that the com-

position of the sheet was:

Element Percent of weight

C 0.01

Mn 9.20

Si 0.93

Cr 20.80

Ni 6.80

N 0.36

Ti 0.08

Cb 0.18

Mo 0.25

Fe Balance

Density: 0.283 ib/cu in.; 782 gm/cc

The 21-6-9 steel is an austenitic stainless steel that is strengthened by strain

hardening but not by thermal treatment. It has, in the annealed condition,

about twice the yield strength of conventional 18-8 stainless steels. However

the same equipment and techniques used to fabricate the conventional materials

serve equally as well for 21-6-9. No special techniques or procedures were

used in the processing of the 21-6-9 specimens.

The results of the tests conducted on the 21-6-9 specimens are shown in fig-

ures 93 through 95 and listed in tables 26 and 27 of the Appendix. Photomicro-

graphs of the microstructure of 21-6-9 in various conditions are shown in fig-

96.

The 21-6-9 sheet was found to have a uniform strain capability of 40%

at room temperature, 56% at -II0°F (194°K), 42% at -320°F (78°K) and only 3%

at -423°F (20°K). Because its uniform strain capability was so low at -423°F

(20°K), no 21-6-9 specimens were strained at that temperature.

For strains up to 40% (the room temperature strain capability of ti_e 21-6-9

sheet), the most beneficial strengthening effect was obtained by straining at

room temperature. Within the 40% range, a given amount of strain produced a

higher tensile yield strength when the 21-6-9 was strained at room temperature

than when it was strained at either of the cryogenic temperatures. At the

cryogenic temperatures, higi_er ultimate tensile strengths were developed.

Consequently, for strains of 40% and less, straining 21-6-9 at room tempera-

ture produces more beneficial results than does cryostraining.

The one advantage that can be gained from cryostraining 21-6-9 is that at

-II0°F (194°K) and at -320°F (78°K) it can be uniformly strained more than 40%.

Thus iligher tensile strengths can be developed at those temperatures than at

room temperature. Except for the additional uniform strain capability that the

material ilas at cryogenic temperatures, cryostraining of 21-6-9 is not beneficial.
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_ . J, _ .L_

(a) Soaked at Room Temperature,

Unaged

(6) 32% Strain at l'_o_3n3Temper-

ature, [naged

(c) 45% Strain at -II0°F

(194°K), Unaged

(d) 15% Strain at -320°F

(78°K), Unaged

./

(e)

• L

• r

32% Strain at -320,F

(78°K), Unaged

(f) Soaked at -423°F (20°K),

Unaged

Note: The structure remained fully austenitic and only

showed more twinning as a direct result of increased

strain.

Electroetch: HCL + Methanol 500X

Figure 96.- Microstructure of 21-6-9 Corrosion Resistant Steel
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5A_-2.5Sn EL1 Titanium Alloy

A sheet of annealed 5A_-2.5Sn ELI titanium alloy measuring 0.071x36x96 in.

(0.180x91x244 cm) was procured to material specfication AMS 4909B. The chemi-

cal composition of the sheet was:

Element Percent by Weight

C 0.015

Fe 0.07

N2 0.012

A_ 5.50

H2 0.013

Sn 2.70

Mn 0. 003

02 0.08

Ti Balance

Density: 0.162 ib/cu in.; 4.48 gm/cc

The 5A_-2.5Sn ELI titanium alloy specimens were prepared and processed in

the normal manner described in Chapter III.

The results of the test conducted on the 5A_-2.5Sn ELI titanium alloy speci-

mens are given in figures 97 through 99 and in tables 28 and 29 of the Appen-

dix. Figure i00 shows photomicrographs of the microstructure of the 5A_-2.5 Sn

ELI in various strained and unstrained conditions.

Cryostraining is not a practical method of strengthening 5#_-2.5Sn ELI

titanium alloy sheet. Higher tensile strengths can be developed at -320°F

(78°K) by making use of the material's higher uniform strain capability at that

temperature. However, a comparison of the properties of the specimens that had

been strained 8.5% at room temperature (85% of the material's room temperature

uniform strain capability) with the properties of the specimens that had been

strained 12% at -320°F (78°K) (80% of the material's uniform strain capability)

shows that the tensile yield strength of the specimens strained at -320°F (780K)

was only 4900 psi (3380 N/cm 2) higher (3.8%) than that of the specimens that

had been strained at room temperature. Cryostraining 5A_-2.5Sn ELI titanium

alloy sheet offers no significant advantages.
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(a) RoomTemperature Soak,
Unaged

(b)

ji _" F ::.....
s

8.5% Strain at Room Temper-

ature, Unaged

(c) Soaked at -II0°F

(194°K), Unaged

(d) 8.5% Strain at -IIO°F
(194°K), Unaged

i. 4 ""

(e) Soaked at -320°F

(78°K), Unaged

(f) 12% Strain at -320°F

(78°K), Unaged

(g) Soaked at -423°F

(20 °K), Unaged

i,
(h) 12% Strain at -423°F

(20°K), Unaged

No te : The effects of straining at different temperatures

are not manifest by observable changes to the all

alpha microstructure.
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Etch: HNO 3 - HF

Figure I00.- I1icrostructure of 5A_-2.5Sn ELI Titanium Alloy
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6A_-4V ELI _itanium Alloy

A 0.071x36x96 in. (O.180x91x244cm) sheet of annealed 6A_-4V EL1 titanium
alloy was procured to material specification AMS4907B. The chemical composi-
tion of the sheet is:

Element Percent by weight
C 0.023
Fe 0.i0
N2 0.011
A_ 5.90
Va 4.00
H2 0.005
02 0.i0
Ti Balance

Density 0.160 ib/cu in.; 4.43 gm/cc

Becausethe 6A_-4VELI titanium alloy was procured in the annealed condition
it was necessary to solution treat the material before it could be strained.
The solution treatment specified was 1 hr at 1750°F (7220°K), water quench (5-
sec maximumquench delay time), and the appropriate measureswere to be taken
to protect against interstitial contamination. It was necessary to subcontract
the solution treatment of this material and the process requirements were not
met. A vacuumfurnace was used with the result that the quench-delay time ex-
ceeded the specified 5 sec. The too slowly cooled (slack quenched) material
developed lower than normal properties, a condition that influenced the results
of all subsequent tests conducted on the 6A2-4VELI material. However, the com-
parative value of the results were considered to be adequate.

During solution treatment the surface material was also contaminated and an
alpha case was developed. Examination of the microstructure showedthat the
case depth was 0.003 in. (0.008 cm). Consequently, all of the 6A_-4V ELI speci-
menswere chem-milled after they has been machined and no less than 0.005 in.
(0.013 cm) of stock was removedfrom all surfaces.

The 6A_-4V ELI sheet material had such low uniform strain capability at
-320°F (78°K) and at -423°F (20°K) that no specimenswere strained at those
temperatures. Also, again becauseof low uniform strain capability, 6AI-4V
specimenswere strained to only two, rather than three, strain levels at -II0°F
(194°K), and to only one level of room temperature. Even at the latter tempera-
tures the standard (for this program) strain rate of 0.050 in./in./minute
(0.050 cm/cm/minute) was not used in straining the specimens; instead a strain
rate of 0.005 in./in./min (0.005 cm/cm/minute) was used.

The standard aging treatment of 4 hr at 1000°F (812°K) was given the 6A_-4V
specimens that were aged. Before aging, the specimenswere thoroughly cleaned
and coated with a protective lacquer.
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The results of the tests conducted on the 6A_-4V EL1 specimensare given
in figures i01 through 106, and are listed in tables 30 and 31 of the Appendix.
_igure 107 shows photomicrographs of the microstructure of! the 6A_-4Vsheet
material in various conditions.

The 6A -4\ ELI sheet material had low uniform strain capability at room
temperature and lower still at the cryogenic temperatures. This material is
not suitable for cryostraining.
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(a) Soaked at Room Temperature,

Aged 4 hr at 1000°F

(812°K)

(b) 7% Strain at Room Temper-

ature, Aged 4 hr at 1000°F

(812 °K)

(c) Soaked at -II0°F (194°K),

Unaged
(d) Soaked at -ll0°F (194°K),

Aged 4 hr at IO00°F

(812°K)

(e) 7% Strain at Room Temper-

ature, Unaged
(f) 6.5% Strain at -II0°F

(1940K), Aged 4 hr at

lO00°F (8120K)

(g) 2.5% Strain at -II0°F

(194°K), Aged

(h) 6.5% Strain at -IIO°F

(194°K), Unaged

Note: The appearance of the microstructure was not

affected by straining.

Etch: HNO3 - 11F

Figure I07.- Microstructure of 6A_-4V ELl Titanium Alloy

500X
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V. CONCLUSIONS

Fifteen metal].ic alloys were tc-:!_rd E:o detorminL ,.:i;ici_.of them could be sig-

nificantly strengthened through c,; i ,..'_.Tkin_ at c_,'_24_:_2c temperatures. The

alloys tested were 2219 aluminum, !"_3(, _Jlui=i _um, 60<I a[umfnum, bery]]ium cop-

per, L-605 cobalt, ,'qP 35 _q cobalt-ni<kel, I,AI41A :!_igi_c_ium, Inconel 718, "_ickc]

440, A-286 corrosion resistant ste,__f, PH 14-_ )kJ {'oI-]7=.s[Ollresistant steel,

TRIP steel, 2]-6-9 corrosion resisLant sic, :_ )', +V : ] titanium, and 5A_-2.3:)_

ELI titanium.

For only two of the 15 alloys was strafnfng _t crvc, g_qlic temperatures found

to be ;t significantly better stren_Li_ening tr<,atment ti_n_ r{_om temperature

straining. These two alloys were PH 14-8 Mo, a precipitation hardening semi-

austenitic stafnless steel, and ,x_) 35 N, a cobalt-nickel multiphase alloy. Both

of these alloys are strengthened by phase_ [ransformat[<)n. Pll ]4-8 Mo in the

annealed (solution treated) condition l_as an austcniti_ structure, lhe auste-

nit<- can be transformed to martens[te either by therm:-I treatment or by cold.

working. The structure of annealed >LP 35 N is face-centered cubic. When it is

strained, platelets of a close-packed hexagonal phase form within the original

structure. The test results [ndfc.qte that, comp;Ircd with room temperature

straining effects, straining at cryogenic t<m:per_tk_L%':_ enhanced the strain in-

duced phase transformation of bot]; $_lloys.

It was found that seven other a]loys, 0061 a l.umi::um, _4%0 aluminum, Inconel

_0, _ , _ ,718, Nickel '' beryllium copper, A-')80 and ')1-6 -<) -o_1]d be strained greater

amounts when the straining was done at cryogenic t_m'.p__'_-.Itures rnther than at

room temperature. Because of the additional, strain clpability at the cryogenic

temperatures, these alloys can be strain harden_d t_ !kig]_- strengths at cry<)-

genie temperatures than at room temperatures.

For the other five alloys cryostrain[ng was f(,und to be of no benefit.

Specific conclusions reached as a result of ti_i._- :_tudv are:

l) Cryostraining, compared to room temper_turc strainfn Z, is a truly

beneficial strengthening proct:ss _n]y i-_,r {:in>st metal lic a] loys

that are strengthened by a stra[n-[nduc<_d phase transformation that

is enhanced when the material is strained at cryogenic tempera-

tures ;

2) Cryostraining is not ne('essarilv _ p:-:_,:! i _1 ::_,c_hod of strengthen-

ing alloys that have a higher strain capability at cryogenic tem-

peratures than room temperature when a strain-induced transformation

does not occur along with strain !_arclen_ng because the gains in

strengt}_ are slight compared to t!_ _ ]_>> "_ _,]ongation;

3) The response to cryostraintng demonstrat_{i !_v bot'._ PII 14-8 Ho and

lip 35 N is sufficient to merit t_'ullti_]t_,{] it_v_:estJgation of the ef-

fects of cryostraining on their mec}_a_ic,'ll and physical properties

and those of similar alloys;
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4) Light microscopy techniques do not appear to be adequate to distin-

guish the more subtle changes in microstructure in alloys where

strain-induced transformations resulting from cryostraining produce

significant strengthening.
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